Skip to main content
Log in

Characterization of a KCS-like KASII from Jessenia bataua that Elongates Saturated and Monounsaturated Stearic Acids in Arabidopsis thaliana

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 16 December 2010

Abstract

As the world population grows, the demand for food increases. Although vegetable oils provide an affordable and rich source of energy, the supply of vegetable oils available for human consumption is limited by the “fuel vs food” debate. To increase the nutritional value of vegetable oil, metabolic engineering may be used to produce oil crops of desirable fatty acid composition. We have isolated and characterized β-ketoacyl ACP-synthase II (KASII) cDNA from a high-oleic acid palm, Jessenia bataua. Jessenia KASII (JbKASII) encodes a 488-amino acid polypeptide that possesses conserved domains that are necessary for condensing activities. When overexpressed in E. coli, recombinant His-tagged JbKASII was insoluble and non-functional. However, Arabidopsis plants expressing GFP-JbKASII fusions had elevated levels of arachidic acid (C20:0) and erucic acid (C22:1) at the expense of stearic acid (C18:0) and oleic acid (C18:1). Furthermore, JbKASII failed to complement the Arabidopsis KASII mutant, fab1-2. This suggests that the substrate specificity of JbKASII is similar to that of ketoacyl-CoA synthase (KCS), which preferentially elongates stearic and oleic acids, and not palmitic acid. Our results suggest that the KCS-like JbKASII may elongate C18:0 and C18:1 to yield C20:0 and C22:1, respectively. JbKASII may, therefore, be an interesting candidate gene for promoting the production of very long chain fatty acids in transgenic oil crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. U.N. Secretariat (New York). Population Division Department of Economic and Social Affairs. Report of the Secretary–General on the review and appraisal of the progress made in achieving the goals and objectives of the Programme of Action of the International Conference on Population and Development. Population Newsletter No. 77, June 2004, p. 9.

  2. Broun, P., Gettner, S., & Somerville, C. (1999). Genetic engineering of plant lipids. Annual Review of Nutrition, 19, 197–216.

    Article  CAS  Google Scholar 

  3. Thelen, J. J., & Ohlrogge, J. B. (2002). Metabolic engineering of fatty acid biosynthesis in plants. Metabolic Engineering, 4, 12–21.

    Article  CAS  Google Scholar 

  4. Shimakata, T., & Stumpf, P. K. (1982). Isolation and function of spinach leaf beta-ketoacyl-[acyl-carrier-protein] synthases. Proceedings of the National Academy of Sciences USA, 79, 5808–5812.

    Article  CAS  Google Scholar 

  5. Stumpf, P. K. (Ed.). (1980). The biosynthesis of saturated and unsaturated fatty acids. New York: Academic Press.

    Google Scholar 

  6. Browse, J., & Somerville, C. (1991). Glycerolipid synthesis: Biochemistry and regulation. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 467–506.

    Article  CAS  Google Scholar 

  7. Voelker, T., & Kinney, A. J. (2001). Variations in the biosynthesis of seed-storage lipids. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 335–361.

    Article  CAS  Google Scholar 

  8. Carrero, J. J., Fonolla, J., Marti, J. L., Jimenez, J., et al. (2007). Intake of fish oil, oleic acid, folic acid, and vitamins B-6 and E for 1 year decreases plasma C-reactive protein and reduces coronary heart disease risk factors in male patients in a cardiac rehabilitation program. Journal of Nutrition, 137, 384–390.

    CAS  Google Scholar 

  9. Lopez-Huertas, E. (2010) Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacological Research, 61, 200–207.

    Google Scholar 

  10. Fehling, E., & Mukherjee, K. D. (1991). Acyl-CoA elongase from a higher plant (Lunaria annua): Metabolic intermediates of very-long-chain acyl-CoA products and substrate specificity. Biochimica et Biophysica Acta, 1082, 239–246.

    CAS  Google Scholar 

  11. Stumpf, P. K., & Pollard, M. R. (Eds.). (1983). Pathways of fatty acid biosynthesis in higher plants with particular reference to developing rapeseed. New York: Academic Press.

    Google Scholar 

  12. Cassagne, C., Lessire, R., Bessoule, J. J., Moreau, P., et al. (1994). Biosynthesis of very long chain fatty acids in higher plants. Progress in Lipid Research, 33, 55–69.

    Article  CAS  Google Scholar 

  13. Domergue, F., Bessoule, J. J., Moreau, P., Lessire, R., & Cassagne, C. (Eds.). (1998). Recent advances in plant fatty acid elongation. Cambridge: Cambridge University Press.

    Google Scholar 

  14. Kunst, L., & Samuels, A. L. (2003). Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research, 42, 51–80.

    Article  CAS  Google Scholar 

  15. Millar, A. A., & Kunst, L. (1997). Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant Journal, 12, 121–131.

    Article  CAS  Google Scholar 

  16. Balick, M. J., Gershoff, S. N. (1981). Nutritional evaluation of the Jessenia bataua palm: Source of high quality protein and oil from tropical America. Economic Botany, 35, 261–271.

    Google Scholar 

  17. Carlsson, A. S., LaBrie, S. T., Kinney, A. J., von Wettstein-Knowles, P., & Browse, J. (2002). A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket. Plant Journal, 29, 761–770.

    Article  CAS  Google Scholar 

  18. Browse, J., McCourt, P. J., & Somerville, C. R. (1986). Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Analytical Biochemistry, 152, 141–145.

    Article  CAS  Google Scholar 

  19. Wu, J., James, D. W., Jr., Dooner, H. K., & Browse, J. (1994). A mutant of arabidopsis deficient in the elongation of palmitic acid. Plant Physiology, 106, 143–150.

    Article  CAS  Google Scholar 

  20. Pidkowich, M. S., Nguyen, H. T., Heilmann, I., Ischebeck, T., & Shanklin, J. (2007). Modulating seed beta-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. Proceedings of the National Academy of Sciences USA, 104, 4742–4747.

    Article  CAS  Google Scholar 

  21. Leonard, J. M., Knapp, S. J., & Slabaugh, M. B. (1998). A Cuphea beta-ketoacyl-ACP synthase shifts the synthesis of fatty acids towards shorter chains in Arabidopsis seeds expressing Cuphea FatB thioesterases. Plant Journal, 13, 621–628.

    Article  CAS  Google Scholar 

  22. Harwood, J. L. (1996). Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta, 1301, 7–56.

    Google Scholar 

  23. Lassner, M. W., Lardizabal, K., & Metz, J. G. (1996). A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell, 8, 281–292.

    Article  CAS  Google Scholar 

  24. Cahoon, E. B., Marillia, E. F., Stecca, K. L., Hall, S. E., et al. (2000). Production of fatty acid components of meadowfoam oil in somatic soybean embryos. Plant Physiology, 124, 243–251.

    Article  CAS  Google Scholar 

  25. Post-Beittenmiller, D. (1996). Biochemistry and molecular biology of wax production in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 405–430.

    Article  CAS  Google Scholar 

  26. Ramli, U. S., Basri M. W., Sambanthamurthi, R., Cheah, S. C., Sharifah, S. R. S. A., Abdullah, S. N. A., Parveez, A. G. K., Othman, A., Manaf, M. A. A., Rasid, O. A., Aminudin, D., & Yunus, A. M. M. (2009). Recombinant enzyme and uses therefor. U.S. Patent, US7,538,204B2.

  27. Ramli, U. S., & Sambanthamurthi, R. (Eds.). (1996). Beta-ketoacyl ACP synthase II in the oil palm (Elaeis guineensis Jacq) mesocarp. Toronto: Kluwer Academic.

    Google Scholar 

  28. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., et al. (2005). Protein identification and analysis tools on the ExPASy Server. In M. W. John (Ed.), The proteomics protocols handbook. New Jersey: Humana Press.

    Google Scholar 

  29. Li, M. J., Li, A. Q., Xia, H., Zhao, C. Z., et al. (2009). Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L. Journal of Biosciences, 34, 227–238.

    Article  CAS  Google Scholar 

  30. von Wettstein-Knowles, P., Olsen, J., Arnvig Mcguire, K., & Larsen, S. (2000). Molecular aspects of beta-ketoacyl synthase (KAS) catalysis. Biochemical Society Transactions, 28, 601–607.

    Article  Google Scholar 

  31. Huang, W., Jia, J., Edwards, P., Dehesh, K., et al. (1998). Crystal structure of beta-ketoacyl-acyl carrier protein synthase II from E. coli reveals the molecular architecture of condensing enzymes. EMBO Journal, 17, 1183–1191.

    Article  CAS  Google Scholar 

  32. Prinz, W. A., Aslund, F., Holmgren, A., & Beckwith, J. (1997). The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. Journal of Biological Chemistry, 272, 15661–15667.

    Article  CAS  Google Scholar 

  33. Mitraki, A., Fane, B., Haase-Pettingell, C., Sturtevant, J., & King, J. (1991). Global suppression of protein folding defects and inclusion body formation. Science, 253, 54–58.

    Article  CAS  Google Scholar 

  34. Voelker, T. A., & Davies, H. M. (1994). Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. Journal of Bacteriology, 176, 7320–7327.

    CAS  Google Scholar 

  35. Garwin, J. L., Klages, A. L., & Cronan, J. E., Jr. (1980). Beta-ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. Journal of Biological Chemistry, 255, 3263–3265.

    CAS  Google Scholar 

  36. Subrahmanyam, S., & Cronan, J. E., Jr. (1998). Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. Journal of Bacteriology, 180, 4596–4602.

    CAS  Google Scholar 

  37. Sandager, L., & Stymne, S. (2000). Characterisation of enzymes determining fatty acid chain length in developing seeds of Limnanthes douglasii. Journal of Plant Physiology, 156, 617–622.

    CAS  Google Scholar 

  38. Kunst, L., Taylor, D. C., & Underhill, E. W. (1992). Fatty acid elongation in developing seeds of Arabidopsis thaliana affecting wax biosynthesis in Arabidopsis thaliana. Plant Physiology and Biochemistry, 30, 425–434.

    CAS  Google Scholar 

  39. Abbadi, A., Brummel, M., Schutt, B. S., Slabaugh, M. B., et al. (2000). Reaction mechanism of recombinant 3-oxoacyl-(acyl-carrier-protein) synthase III from Cuphea wrightii embryo, a fatty acid synthase type II condensing enzyme. Biochemical Journal, 345(1), 153–160.

    Article  CAS  Google Scholar 

  40. Jaworski, J. G., Tai, H., Ohlrogge, J. B., & Post-Beittenmiller, D. (1994). The initial reactions of fatty acid biosynthesis in plants. Progress in Lipid Research, 33, 47–54.

    Article  CAS  Google Scholar 

  41. Yasuno, R., von Wettstein-Knowles, P., & Wada, H. (2004). Identification and molecular characterization of the beta-ketoacyl-[acyl carrier protein] synthase component of the Arabidopsis mitochondrial fatty acid synthase. Journal of Biological Chemistry, 279, 8242–8251.

    Article  CAS  Google Scholar 

  42. D’Agnolo, G., Rosenfeld, I. S., & Vagelos, P. R. (1975). Beta-Ketoacyl-acyl carrier protein synthetase. Characterization of the acyl-enzyme intermediate. Journal of Biological Chemistry, 250, 5283–5288.

    Google Scholar 

  43. Marchler-Bauer, A., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., et al. (2009). CDD: Specific functional annotation with the Conserved Domain Database. Nucleic Acids Research, 37, D205–D210.

    Article  CAS  Google Scholar 

  44. Drexler, H., Spiekermann, P., Meyer, A., Domergue, F., et al. (2003). Metabolic engineering of fatty acids for breeding of new oilseed crops: Strategies, problems and first results. Journal of Plant Physiology, 160, 779–802.

    Article  CAS  Google Scholar 

  45. Abbadi, A., Domergue, F., Bauer, J., Napier, J. A., et al. (2004). Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: Constraints on their accumulation. Plant Cell, 16, 2734–2748.

    Article  CAS  Google Scholar 

  46. Guo, Y., Mietkiewska, E., Francis, T., Katavic, V., et al. (2009). Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene. Plant Molecular Biology, 69, 565–575.

    Article  CAS  Google Scholar 

  47. Tang, J., Scarth, R., & Fristensky, B. (2003). Effects of genomic position and copy number of Acyl-ACP thioesterase transgenes on the level of the target fatty acids in Brassica napus L. Molecular Breeding, 12, 71–81.

    Article  CAS  Google Scholar 

  48. Voinnet, O. (2001). RNA silencing as a plant immune system against viruses. Trends in Genetics, 17, 449–459.

    Article  CAS  Google Scholar 

  49. Hamilton, A. J., & Baulcombe, D. C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286, 950–952.

    Article  CAS  Google Scholar 

  50. Johansen, W., & Wilson, R. C. (2008). Viral suppressor proteins show varying abilities and effectiveness to suppress transgene-induced post-transcriptional gene silencing of endogenous Chalcone synthase in transgenic Arabidopsis. Plant Cell Reports, 27, 911–921.

    Article  CAS  Google Scholar 

  51. Jackson, M. R., Nilsson, T., & Peterson, P. A. (1990). Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO Journal, 9, 3153–3162.

    CAS  Google Scholar 

  52. Geldner, N., Anders, N., Wolters, H., Keicher, J., et al. (2003). The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell, 112, 219–230.

    Article  CAS  Google Scholar 

  53. Doyle, J. J., & Doyle, J. L. (1987). Isolation of plant DNA from fresh tissue. FOCUS, 12, 13–15.

    Google Scholar 

  54. Zeng, Y., & Yang, T. (2002). RNA isolation from highly viscous samples rich in polyphenols and polysaccharides. Plant Molecular Biology Reporter, 20, 417a–417e.

    Article  Google Scholar 

  55. Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19, 1349.

    Google Scholar 

  56. Clough, S. J., & Bent, A. F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16, 735–743.

    Article  CAS  Google Scholar 

  57. Dereeper, A., Guignon, V., Blanc, G., Audic, S., et al. (2008). Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36, W465–469.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Director-General of the Malaysian Palm Oil Board for permitting to publish this article, Rajanaidu a/l Nookiah for providing the Jessenia samples, and Mahadzir b. Jaafar for technical assistance with the gas chromatography analysis of fatty acids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umi Salamah Ramli.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12033-010-9361-7.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12033_2010_9350_MOESM1_ESM.doc

Table S1 - Predicted cellular localizations of plant KASII homologs. The amino acid sequences of KASII homologs were subjected to motif analysis using PSORT (http://psort.hgc.jp/), and cellular localizations were predicted. +, likely cellular localization; UD, undetermined. The GenBank accession numbers of the KASII homolgs are listed after the species names. (DOC 33 kb)

12033_2010_9350_MOESM2_ESM.doc

Figure S1 - ClustalW multiple sequence alignment of plant Ketoacyl-CoA Synthases and JbKASII. Amino acid sequences of KCS homologs from Camellia oleifera (ACQ41892), Arabidopsis thaliana (AAF02814, Q38860), Lunaria annua (ACJ6177), and Brassica oleracea (AAC25112) were subjected to ClustalW multiple sequence alignment. KCS homologs showed significant sequence identity from the 180th amino acid to the 530th amino acid in the chalcone and stilbene synthase domain. There is little sequence similarity between JbKASII and the KCS homologs. (DOC 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teh, OK., Ramli, U.S. Characterization of a KCS-like KASII from Jessenia bataua that Elongates Saturated and Monounsaturated Stearic Acids in Arabidopsis thaliana . Mol Biotechnol 48, 97–108 (2011). https://doi.org/10.1007/s12033-010-9350-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9350-x

Keywords

Navigation