Skip to main content
Log in

Development, Characterization and Cross Species Amplification of Polymorphic Microsatellite Markers from Expressed Sequence Tags of Turmeric (Curcuma longa L.)

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Expressed sequence tags (ESTs) from turmeric (Curcuma longa L.) were used for the screening of type and frequency of Class I (hypervariable) simple sequence repeats (SSRs). A total of 231 microsatellite repeats were detected from 12,593 EST sequences of turmeric after redundancy elimination. The average density of Class I SSRs accounts to one SSR per 17.96 kb of EST. Mononucleotides were the most abundant class of microsatellite repeat in turmeric ESTs followed by trinucleotides. A robust set of 17 polymorphic EST–SSRs were developed and used for evaluating 20 turmeric accessions. The number of alleles detected ranged from 3 to 8 per loci. The developed markers were also evaluated in 13 related species of C. longa confirming high rate (100%) of cross species transferability. The polymorphic microsatellite markers generated from this study could be used for genetic diversity analysis and resolving the taxonomic confusion prevailing in the genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Velayudhan, K. C., Muralidharan, V. K., Amalraj, V. A., Gautam, P. L., Mandal, S., & Kumar, D. (1999). Curcuma genetic resources. Scientific Monograph No. 4 (pp. 1–5). New Delhi: National Bureau of Plant Genetic Resources.

    Google Scholar 

  2. Sasikumar, B. (2005). Genetic resources of Curcuma: Diversity, characterization and utilization. Plant Genetic Resources Characterization & Utilization, 3, 230–251.

    CAS  Google Scholar 

  3. Shamina, A., Zachariah, T. J., Sasikumar, B., & George, J. K. (1998). Biochemical variation in turmeric (Curcuma longa L.) accessions based on isozyme polymorphism. Journal of Horticultural Science & Biotechnology, 73, 479–483.

    CAS  Google Scholar 

  4. Nayak, S., Naik, P. K., Acharya, L. K., & Pattnaik, A. K. (2006). Detection and evaluation of genetic variation in 17 promising cultivars of turmeric (Curcuma longa L.) using 4C nuclear DNA content and RAPD markers. Cytologia, 71, 49–55.

    Article  CAS  Google Scholar 

  5. Syamkumar, S. (2008). Molecular, biochemical and morphological characterization of selected Curcuma accessions. Ph.D. Thesis, Calicut University, Calicut, India.

  6. Salvi, N. D., George, L., & Eapen, S. (2001). Plant regeneration from leaf base callus of turmeric and random amplified polymorphic DNA analysis of regenerated plants. Plant Cell, Tissue and Organ Culture, 66, 113–119.

    Article  CAS  Google Scholar 

  7. Panda, M. K., Mohanty, S., Subudhi, E., Acharya, L., & Nayak, S. (2007). Assessment of genetic stability of micropropagated plants of Curcuma longa L. by cytophotometry and RAPD analyses. International Journal of Integrative Biology, 1, 189–195.

    CAS  Google Scholar 

  8. Tyagi, R. K., Agrawal, A., Mahalakshmi, C., Hussain, Z., & Tyagi, H. (2007). Low-cost media for in vitro conservation of turmeric (Curcuma longa L.) and genetic stability assessment using RAPD markers. In Vitro Cellular & Developmental Biology Plant, 43, 51–58.

    Article  CAS  Google Scholar 

  9. Parthasarathy, V. A., & Sasikumar, B. (2006). Biotechnology of Curcuma. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 1(020), 9 pp.

  10. Powell, W., Machray, G. C., & Provan, J. (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1, 215–222.

    Google Scholar 

  11. Gupta, P. K., & Varshney, R. K. (2000). The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica, 113, 163–185.

    Article  CAS  Google Scholar 

  12. Gupta, P. K., Balyan, H. S., Sharma, P. C., & Ramesh, B. (1996). Microsatellites in plants: A new class of molecular markers. Current Science, 70, 45–54.

    CAS  Google Scholar 

  13. Thiel, T., Michalek, W., Varshney, R. K., & Graner, A. (2003). Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 106, 411–422.

    CAS  Google Scholar 

  14. Tautz, D., & Renz, M. (1984). Simple sequence repeats are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 12, 4127–4138.

    Article  CAS  Google Scholar 

  15. Toth, G., Gaspari, Z., & Jurka, J. (2000). Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Research, 10, 967–981.

    Article  CAS  Google Scholar 

  16. Temnykh, S., DeClerck, G., Lukashova, A., Lipovich, L., Cartinhour, S., & McCouch, S. (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Research, 11, 1441–1452.

    Article  CAS  Google Scholar 

  17. Adams, M. D., Kelley, J. M., Gocayne, J. D., Dubnick, M., Polymeropoulos, M. H., Xiao, H., et al. (1991). Complementary DNA sequencing: Expressed sequence tags and human genome project. Science, 252, 1651–1656.

    Article  CAS  Google Scholar 

  18. Scott, K. D., Eggler, P., Seaton, G., Rossetto, M., Ablett, E. M., Lee, L. S., et al. (2000). Analysis of SSRs derived from grape ESTs. Theoretical and Applied Genetics, 100, 723–726.

    Article  CAS  Google Scholar 

  19. Aggarwal, R. K., Hendre, P. S., Varshney, R. K., Bhat, P. R., Krishnakumar, V., & Singh, L. (2007). Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. Theoretical and Applied Genetics, 114, 359–372.

    Article  CAS  Google Scholar 

  20. Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genic microsatellite markers in plants: Features and applications. Trends in Biotechnology, 23, 48–55.

    Article  CAS  Google Scholar 

  21. Lee, S. Y., Fai, W. K., Zakaria, M., Ibrahim, H., Othman, R. Y., Gwag, J. G., et al. (2007). Characterization of polymorphic microsatellite markers, isolated from ginger (Zingiber officinale Rosc.). Molecular Ecology Notes, 7, 1009–1011.

    Article  CAS  Google Scholar 

  22. Kumpatla, S. P., & Mukhopadhyay, S. (2005). Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species. Genome, 48, 985–998.

    Article  CAS  Google Scholar 

  23. Masoudi-Nejad, A., Tonomura, K., Kawashima, S., Moriya, Y., Suzuki, M., Itoh, M., et al. (2006). EGassembler: Online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Research, 34, W459–W462.

    Article  CAS  Google Scholar 

  24. Faircloth, B. C. (2008). MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Molecular Ecology Resources, 8, 92–94.

    Article  CAS  Google Scholar 

  25. Gupta, P. K., Rustgi, S., Sharma, S., Singh, R., Kumar, N., & Balyan, H. S. (2003). Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Molecular Genetics and Genomics, 270, 315–323.

    Article  CAS  Google Scholar 

  26. Rozen, S., & Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. In S. Krawetz & S. Misener (Eds.), Bioinformatics methods and protocols: Methods in molecular biology (pp. 365–386). Totowa, NJ, USA: Humana Press.

    Google Scholar 

  27. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  28. Syamkumar, S., Lowarence, B., & Sasikumar, B. (2003). Isolation and amplification of DNA from rhizomes of turmeric and ginger. Plant Molecular Biology Reporter, 21, 171a–171e.

    Article  Google Scholar 

  29. Benbouza, H., Jacquemin, J. M., Baudoin, J. P., & Mergeai, G. (2006). Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnology, Agronomy, Society & Environment, 10, 77–81.

    CAS  Google Scholar 

  30. Cardle, L., Ramsay, L., Milbourne, D., Macaulay, M., Marshall, D., & Waugh, R. (2000). Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics, 156, 847–854.

    CAS  Google Scholar 

  31. Kantety, R. V., La Rota, M., Matthews, D. E., & Sorrells, M. E. (2002). Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum, and wheat. Plant Molecular Biology, 48, 501–510.

    Article  CAS  Google Scholar 

  32. Varshney, R. K., Thiel, T., Stein, N., Langridge, P., & Graner, A. (2002). In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cellular & Molecular Biology Letters, 7, 537–546.

    CAS  Google Scholar 

  33. Gao, L., Tang, J., Li, H., & Jia, J. (2003). Analysis of microsatellites in major crops assessed by computational and experimental approaches. Molecular Breeding, 12, 245–261.

    Article  CAS  Google Scholar 

  34. Poncet, V., Rondeau, M., Tranchant, C., Cayrel, A., Hamon, S., de Kochko, A., et al. (2006). SSR mining in coffee tree EST databases: Potential use of EST–SSRs as markers for the Coffea genus. Molecular Genetics and Genomics, 276, 436–449.

    Article  CAS  Google Scholar 

  35. Dong, J., Guang-Yan, Z., & Qi-Bing, H. (2006). Analysis of microsatellites in citrus unigenes. Acta Genetica Sinica, 33, 345–353.

    Article  Google Scholar 

  36. Palmieri, D. A., Novelli, V. M., Bastianel, M., Cristofani-Yaly, M., Astua-Monge, G., Carlos, E. F., et al. (2007). Frequency and distribution of microsatellites from ESTs of citrus. Genetics & Molecular Biology, 30, 1009–1018.

    CAS  Google Scholar 

  37. Gupta, S., & Prasad, M. (2009). Development and characterization of genic SSR markers in Medicago truncatula and their transferability in leguminous and non-leguminous species. Genome, 52, 761–771.

    Article  CAS  Google Scholar 

  38. Feng, S. P., Li, W. G., Huang, H. S., Wang, J. Y., & Wu, Y. T. (2009). Development, characterization and cross-species/genera transferability of EST-SSR markers for rubber tree (Hevea brasiliensis). Molecular Breeding, 23, 85–97.

    Article  CAS  Google Scholar 

  39. Nicot, N., Chiquet, V., Gandon, B., Amilhat, L., Legeai, F., Leroy, P., et al. (2004). Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theoretical and Applied Genetics, 109, 800–805.

    Article  CAS  Google Scholar 

  40. Metzgar, D., Bytof, J., & Wills, C. (2000). Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Research, 10, 72–80.

    CAS  Google Scholar 

  41. Rungis, D., Berube, Y., Zhang, J., Ralph, S., Ritland, C. E., Ellis, B. E., et al. (2004). Robust simple sequence repeat (SSR) markers for spruce (Picea spp.) from expressed sequence tags (ESTs). Theoretical and Applied Genetics, 109, 1283–1294.

    Article  CAS  Google Scholar 

  42. Roa, A. C., Chavarriaga-Aguirre, P., Duque, M. C., Maya, M. M., Bonierbale, M. W., Iglesias, C., et al. (2000). Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: Allelic polymorphism and degree of relationship. American Journal of Botany, 87, 1647–1655.

    Article  CAS  Google Scholar 

  43. Lagercrantz, U., Ellegren, H., & Andersson, L. (1993). The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Research, 21, 1111–1115.

    Article  CAS  Google Scholar 

  44. Skornickova, J. L., Sida, O., Jarolimova, V., Sabu, M., Fer, T., Travnicek, P., et al. (2007). Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Annals of Botany, 100, 505–526.

    Article  Google Scholar 

  45. Ramachandran, K. (1961). Chromosome numbers in the genus Curcuma Linn. Current Science, 30, 194–196.

    Google Scholar 

  46. Islam, M. A. (2004). Genetic diversity of the genus Curcuma in Bangladesh and further biotechnological approaches for in vitro regeneration and long-term conservation of C. longa germplasm. PhD thesis, University of Hannover, Germany.

Download references

Acknowledgment

This work was supported by a research grant from Department of Biotechnology (DBT), Government of India, New Delhi. The authors thank DISC, IISR (Indian Institute of Spices Research) for providing the internet facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sasikumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siju, S., Dhanya, K., Syamkumar, S. et al. Development, Characterization and Cross Species Amplification of Polymorphic Microsatellite Markers from Expressed Sequence Tags of Turmeric (Curcuma longa L.). Mol Biotechnol 44, 140–147 (2010). https://doi.org/10.1007/s12033-009-9222-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9222-4

Keywords

Navigation