Skip to main content
Log in

Prays oleae Midgut Putative Receptor of Bacillus thuringiensis Vegetative Insecticidal Protein Vip3LB Differs from that of Cry1Ac Toxin

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Vegetative insecticidal protein (Vip) is a class of insecticidal proteins produced by many Bacillus thuringiensis strains during their vegetative growth stage. The vip3LB gene of B. thuringiensis strain BUPM95, which encodes a protein active against the Lepidoptera olive tree pathogenic insect Prays oleae, was cloned into pET-14b vector and overexpressed in Escherichia coli. The expressed Vip3LB protein, found in the E. coli cytoplasmic fraction, was purified and used to produce anti-Vip3LB antibodies. Using the midgut extract of P. oleae, the purified Vip3LB bound to a 65-kDa protein, whereas Cry1Ac toxin bound to a 210-kDa midgut putative receptor. This result justifies the importance of the biological pest control agent Vip3LB that could be used as another alternative particularly in case of resistance to Cry toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

B :

Bacillus

P :

Prays

IgG:

Immunoglobulin G

References

  1. Höfte, H., & Whiteley, H. R. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews, 53, 242–255.

    Google Scholar 

  2. Tounsi, S., J’Mal, A., Zouari, N., & Jaoua, S. (1999). Cloning and nucleotide sequence of a novel cry1Aa-type gene from Bacillus thuringiensis subsp. kurstaki. Biotechnology Letters, 21, 771–775.

    Article  CAS  Google Scholar 

  3. Tounsi, S., & Jaoua, S. (2003). Characterization of a novel cry2Aa-type gene from Bacillus thuringiensis subsp. kurstaki. Biotechnological Letters, 25, 1219–1223.

    Article  CAS  Google Scholar 

  4. Estruch, J. J., Warren, G. W., Mullins, M. A., Nye, G. J., Craig, J. A., & Koziel, M. G. (1996). VIP3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National Academy of Sciences of the United States of America, 93, 5389–5394.

    Article  CAS  Google Scholar 

  5. Warren, G. W. (1997). Vegetative insecticidal proteins: Novel proteins for control of corn pests. In N. B. Carozzi & M. Koziel (Eds.), Advances in insect control: The role of transgenic plants (pp. 109–121). London: Taylors & Francis.

    Google Scholar 

  6. Estruch, J. J., & Yu, C. G. (2001) Plant pest control. U.S. Patent 6,291,156 B1.

  7. Mesrati, A. L., Tounsi, S., & Jaoua, S. (2005). Characterization of a novel vip3-type gene from Bacillus thuringiensis and evidence of its presence on a large plasmid. FEMS Microbiology Letters, 244, 353–358.

    Article  CAS  Google Scholar 

  8. Chen, J. J., Yu, J. X., Tang, L. X., Tang, M. J., Shi, Y. X., & Pang, Y. (2003). Comparison of the expression of Bacillus thuringiensis full-length and N-terminally truncated vip3A gene in Escherichia coli. Journal of Applied Microbiology, 95, 310–316.

    Article  CAS  Google Scholar 

  9. Mesrati, A. L., Karray, D. M., Tounsi, S., & Jaoua, S. (2005). Construction of a new high copy-number shuttle vector of Bacillus thuringiensis. Letters in Applied Microbiology, 41, 361–366.

    Article  CAS  Google Scholar 

  10. Ferre, J., & Van Rie, J. (2002). Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology, 47, 501–533.

    Article  CAS  Google Scholar 

  11. Schnepf, H. E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., et al. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62, 775–806.

    CAS  Google Scholar 

  12. Lee, M. K., Walters, F. S., Hart, H., Palekar, N., & Chen, J. S. (2003). The mode of action of the Bacillus thuringiensis Vegetative Insecticidal Protein VIP3A differs from that of Cry1Ab δ-endotoxin. Applied and Environmental Microbiology, 69, 4648–4657.

    Article  CAS  Google Scholar 

  13. Tounsi, S., Dammak, M., Rebai, A., & Jaoua, S. (2005). Response of larval Ephestia kuehniella (Lepidoptera/Pyralidae) to individual Bacillus thuringiensis kurstaki toxins and toxin mixtures. Biological Control, 35, 27–31.

    Article  CAS  Google Scholar 

  14. Rouis, S., Chakroun, M., Saadaoui, I., & Jaoua, S. (2007). Proteolysis, histopathological effects and immunohistopathological localization of delta-endotoxins of Bacillus thuringiensis subsp. kurstaki in the midgut of lepidopteran olive tree pathogenic insect Prays oleae. Molecular Biotechnology, 35, 141–148.

    Article  CAS  Google Scholar 

  15. Yu, C. G., Mullins, M. A., Warren, G. W., Koziel, M. G., & Estruch, J. J. (1997). The Bacillus thuringiensis vegetative insecticidal protein VIP3A lyses midgut epithelial cells of susceptible insects. Applied and Environmental Microbiology, 63, 532–536.

    CAS  Google Scholar 

  16. Lee, M. K., Rajamohan, F., Gould, F., & Dean, D. H. (1995). Resistance to Bacillus thuringiensis Cry1A δ-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Applied and Environmental Microbiology, 61, 3836–3842.

    CAS  Google Scholar 

  17. Jurat-Fuentes, J. L., Gould, F. L., & Adang, M. J. (2002). Altered glycosylation of 63- and 68-kilodalton microvillar proteins in Heliothis virescens correlates with reduced Cry1 toxin binding, decreased pore formation, and increased resistance to Bacillus thuringiensis Cry1 toxins. Applied and Environmental Microbiology, 68, 5711–5717.

    Article  CAS  Google Scholar 

  18. Jurat-Fuentes, J. L., Gould, F. L., & Adang, M. J. (2003). Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Applied and Environmental Microbiology, 69, 5898–5906.

    Article  CAS  Google Scholar 

  19. Jurat-Fuentes, J. L., Gahan, L. J., Gould, F. L., Heckel, D. G., & Adang, M. J. (2004). The HevCaLP protein mediates binding specificity of the cry1A class of Bacillus thuringiensis toxins in Heliothis virescens. Biochemistry, 43, 14299–14305.

    Article  CAS  Google Scholar 

  20. Gould, F. (1998). Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annual Review of Entomology, 43, 701–726.

    Article  CAS  Google Scholar 

  21. Roush, R. T. (1998). Two-toxin strategies for management of insecticidal transgenic crops; can pyramiding succeed where pesticide mixtures have not? Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 353, 1777–1786.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Higher Education, Scientific Research and Technology. We thank the Institut de l’olivier de Sfax, Tunisia for providing us with P. oleae larvae. We wish to thank Pr. Jamil Jaoua, Head of the English Unit at the Sfax Faculty of Science for having proofread this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Jaoua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelkefi-Mesrati, L., Rouis, S., Sellami, S. et al. Prays oleae Midgut Putative Receptor of Bacillus thuringiensis Vegetative Insecticidal Protein Vip3LB Differs from that of Cry1Ac Toxin. Mol Biotechnol 43, 15–19 (2009). https://doi.org/10.1007/s12033-009-9178-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9178-4

Keywords

Navigation