Skip to main content

Advertisement

Log in

Cancer Detection and Treatment: The Role of Nanomedicines

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Nanotechnology is a field which has been at the forefront of research over the past two decades. The full potential of nanotechnology has yet to be fully realized. One subset of nanotechnology that has emerged is nanomedicine, which has been able to exploit the unique properties of nano-sized particles for therapeutics. Nanomedicine has the potential to increase the specific treatment of cancer cells while leaving healthy cells intact through the use of novel nanoparticles to seek and treat cancer in the human body. However, there are undoubtedly toxicities, which have not yet been fully elucidated. Various nano-carriers such as nanoshells, nanocrystals, nanopolymers, quantum dots, and dendrimers, and their role in early cancer detection and treatment have been discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Garcia, M., Jemal, A., Ward, E. M., Center, M. M., Hao, Y., Siegel, R. L., et al. (2007). Global cancer facts & figures. Atlanta, GA, USA: The American Cancer Society.

    Google Scholar 

  2. Cancer to be world’s top killer by 2010, World Health Organization says’. (2009). http://www.mlive.com/news/kalamazoo/index.ssf/2008/12/cancer_to_be_worlds_top_killer.html. Accessed 9 Dec 2008.

  3. Jain, R. K. (2005). Antiangiogenic therapy for cancer: Current and emerging concepts. Oncology, 19, 7–16. Williston Park.

    Google Scholar 

  4. Maeda, H., Fang, J., Inutsuka, T., & Kitamoto, Y. (2003). Vascular permeability enhancement in solid tumor: Various factors, mechanisms involved and its implications. International Immunopharmacology, 3, 319–328. doi:10.1016/S1567-5769(02)00271-0.

    Article  CAS  Google Scholar 

  5. Netti, P. A., Baxter, L. T., Boucher, Y., Skalak, R., & Jain, R. K. (1995). Time-dependent behavior of interstitial fluid pressure in solid tumors: Implications for drug delivery. Cancer Research, 55, 5451–5458.

    CAS  Google Scholar 

  6. Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research, 46, 6387–6392.

    CAS  Google Scholar 

  7. Iyer, A. K., Khaled, G., Fang, J., & Maeda, H. (2006). Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today, 11, 812–818. doi:10.1016/j.drudis.2006.07.005.

    Article  CAS  Google Scholar 

  8. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., & Hori, K. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. Journal of Controlled Release, 65, 271–284. doi:10.1016/S0168-3659(99)00248-5.

    Article  CAS  Google Scholar 

  9. Ferrari, M. (2005). Cancer nanotechnology: Opportunities and challenges. Nature reviews. Cancer, 5, 161–171. doi:10.1038/nrc1566.

    CAS  Google Scholar 

  10. Cuenca, A. G., Jiang, H., Hochwald, S. N., Delano, M., Cance, W. G., & Grobmyer, S. R. (2006). Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer, 107, 459–466. doi:10.1002/cncr.22035.

    Article  CAS  Google Scholar 

  11. Smith, A. M., Dave, S., Nie, S., True, L., & Gao, X. (2006). Multicolor quantum dots for molecular diagnostics of cancer. Expert Review of Molecular Diagnostics, 6, 231–244. doi:10.1586/14737159.6.2.231.

    Article  CAS  Google Scholar 

  12. Stroh, M., Zimmer, J. P., Duda, D. G., Levchenko, T. S., Cohen, K. S., Brown, E. B., et al. (2005). Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature Medicine, 11, 678–682. doi:10.1038/nm1247.

    Article  CAS  Google Scholar 

  13. Lidke, D. S., Nagy, P., Heintzmann, R., Arndt-Jovin, D. J., Post, J. N., Grecco, H. E., et al. (2004). Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nature Biotechnology, 22, 198–203. doi:10.1038/nbt929.

    Article  CAS  Google Scholar 

  14. Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4, 435–446. doi:10.1038/nmat1390.

    Article  CAS  Google Scholar 

  15. Wu, X., Liu, H., Liu, J., Haley, K. N., Treadway, J. A., Larson, J. P., et al. (2003). Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology, 21, 41–46. doi:10.1038/nbt764.

    Article  CAS  Google Scholar 

  16. Akerman, M. E., Chan, W. C., Laakkonen, P., Bhatia, S. N., & Ruoslahti, E. (2002). Nanocrystal targeting in vivo. Proceedings of the National Academy of Sciences of the United States of America, 99, 12617–12621. doi:10.1073/pnas.152463399.

  17. Liu, Y., Steiniger, S. C., Kim, Y., Kaufmann, G. F., Felding-Habermann, B., & Janda, K. D. (2007). Mechanistic studies of a peptidic GRP78 ligand for cancer cell-specific drug delivery. Molecular Pharmaceutics, 4, 435–447. doi:10.1021/mp060122j.

    Article  CAS  Google Scholar 

  18. Gao, C., Mao, S., Ditzel, H. J., Farnaes, L., Wirsching, P., Lerner, R. A., et al. (2002). A cell-penetrating peptide from a novel pVII-pIX phage-displayed random peptide library. Bioorganic & Medicinal Chemistry, 10, 4057–4065. doi:10.1016/S0968-0896(02)00340-1.

    Article  CAS  Google Scholar 

  19. Loo, C., Lin, A., Hirsch, L., Lee, M. H., Barton, J., Halas, N., et al. (2004). Nanoshell-enabled photonics-based imaging and therapy of cancer. Technology in Cancer Research & Treatment, 3, 33–40.

    CAS  Google Scholar 

  20. Sokolov, K., Follen, M., Aaron, J., Pavlova, I., Malpica, A., Lotan, R., et al. (2003). Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Research, 63, 1999–2004.

    CAS  Google Scholar 

  21. Yezhelyev, M. V., Gao, X., Xing, Y., Al-Hajj, A., Nie, S., & O’Regan, R. M. (2006). Emerging use of nanoparticles in diagnosis and treatment of breast cancer. The lancet Oncology, 7, 657–667. doi:10.1016/S1470-2045(06)70793-8.

    Article  CAS  Google Scholar 

  22. Shen, T., Weissleder, R., Papisov, M., Bogdanov, A., Jr, & Brady, T. J. (1993). Monocrystalline iron oxide nanocompounds (MION): Physicochemical properties. Magnetic Resonance in Medicine, 29, 599–604. doi:10.1002/mrm.1910290504.

    Article  CAS  Google Scholar 

  23. Harisinghani, M. G., Barentsz, J., Hahn, P. F., Deserno, W. M., Tabatabaei, S., Van de Kaa, C. H., et al. (2003). Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. The New England Journal of Medicine, 348, 2419–2491. doi:10.1056/NEJMoa022749.

    Article  Google Scholar 

  24. Messing, E. M., Manola, J., Sarosdy, M., Wilding, G., Crawford, E. D., & Trump, D. (1999). Immediate hormonal therapy compared with observation after radical prostatectomy and pelvic lymphadenectomy in men with node-positive prostate cancer. The New England Journal of Medicine, 341, 1781–1788. doi:10.1056/NEJM199912093412401.

    Article  CAS  Google Scholar 

  25. Fritz, J., Baller, M. K., Lang, H. P., Rothuizen, H., Vettiger, P., Meyer, E., et al. (2000). Translating biomolecular recognition into nanomechanics. Science, 288, 316–318. doi:10.1126/science.288.5464.316.

    Article  CAS  Google Scholar 

  26. Wu, G., Datar, R. H., Hansen, K. M., Thundat, T., Cote, R. J., & Majumdar, A. (2001). Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnology, 19, 856–860. doi:10.1038/nbt0901-856.

    Article  CAS  Google Scholar 

  27. Sengupta, S., & Sasisekharan, R. (2007). Exploiting nanotechnology to target cancer. British Journal of Cancer, 96, 1315–1319.

    CAS  Google Scholar 

  28. Yue, M., Stachowiak, J. C., & Majumdar, A. (2004). Cantilever arrays for multiplexed mechanical analysis of biomolecular reactions. Mechanics & Chemistry of Biosystems; MCB, 1, 211–220.

    Google Scholar 

  29. Kwon, G. S. (2003). Polymeric micelles for delivery of poorly water-soluble compounds. Critical Reviews in Therapeutic Drug Carrier Systems, 20, 357–403. doi:10.1615/CritRevTherDrugCarrierSyst.v20.i5.20.

    Article  CAS  Google Scholar 

  30. Sparreboom, A., Scripture, C. D., Trieu, V., Williams, P. J., De, T., Yang, A., et al. (2005). Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clinical Cancer Research, 11, 4136–4143. doi:10.1158/1078-0432.CCR-04-2291.

    Article  CAS  Google Scholar 

  31. Gradishar, W. J., Tjulandin, S., Davidson, N., Shaw, H., Desai, N., Bhar, P., et al. (2005). Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. Journal of Clinical Oncology, 23, 7794–7803. doi:10.1200/JCO.2005.04.937.

    Article  CAS  Google Scholar 

  32. Moreno-Aspitia, A., & Perez, E. A. (2005). Nanoparticle albumin-bound paclitaxel (ABI-007): A newer taxane alternative in breast cancer. Future Oncology (London, England), 1, 755–762. doi:10.2217/14796694.1.6.755.

    Article  CAS  Google Scholar 

  33. Martin, F. J. (1998). Clinical pharmacology and antitumor efficacy of DOXIL (pegylated liposomal doxorubicin): Medical applications of liposomes. In D. D. Lasic & D. Papahadjopoulos (Eds.) (pp. 635–688). New York, NY: Elsevier Science BV.

  34. Nishiyama, N. & Kataoka, K. (2006). Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Theory, 112, 630–648.

    Google Scholar 

  35. Park, J. W. (2002). Liposome-based drug delivery in breast cancer treatment. Breast Cancer Research, 4, 95–99. doi:10.1186/bcr432.

    Article  CAS  Google Scholar 

  36. Gao, X., Yang, L., Petros, J. A., Marshall, F. F., Simons, J. W., & Nie, S. (2005). In vivo molecular and cellular imaging with quantum dots. Current Opinion in Biotechnology, 16, 63–72. doi:10.1016/j.copbio.2004.11.003.

    Article  CAS  Google Scholar 

  37. Farokhzad, O. C., Cheng, J., Teply, B. A., Sherifi, I., Jon, S., Kantoff, P. W., et al. (2006). Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 103, 6315–6320. doi:10.1073/pnas.0601755103.

  38. Hirsch, L. R., Stafford, R. J., Bankson, J. A., Sershen, S. R., Rivera, B., Price, R. E., et al. (2003). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America, 100, 13549–13554. doi:10.1073/pnas.2232479100.

  39. El-Sayed, I. H., Huang, X., & El-Sayed, M. A. (2006). Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Letters, 239, 129–135. doi:10.1016/j.canlet.2005.07.035.

    Article  CAS  Google Scholar 

  40. Loo, C., Lowery, A., Halas, N., West, J., & Drezek, R. (2005). Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Letters, 5, 709–711. doi:10.1021/nl050127s.

    Article  CAS  Google Scholar 

  41. Sengupta, S., Eavarone, D., Capila, I., Zhao, G., Watson, N., Kiziltepe, T., et al. (2005). Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 436, 568–572. doi:10.1038/nature03794.

    Article  CAS  Google Scholar 

  42. Jain, R. K. (2001). Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nature Medicine, 7, 987–989. doi:10.1038/nm0901-987.

    Article  CAS  Google Scholar 

  43. Yacoby, I., Bar, H., & Benhar, I. (2007). Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrobial Agents and Chemotherapy, 51, 2156–2163. doi:10.1128/AAC.00163-07.

    Article  CAS  Google Scholar 

  44. Bar, H., Yacoby, I., & Benhar, I. (2008). Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC Biotechnology, 8, 37. doi:10.1186/1472-6750-8-37.

    Article  Google Scholar 

  45. Kojima, C., Kono, K., Maruyama, K., & Takagishi, T. (2000). Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjugate Chemistry, 11, 910–917. doi:10.1021/bc0000583.

    Article  CAS  Google Scholar 

  46. Pathak, P. (2007). Multi-functional nanoparticles and their role in cancer drug delivery––a review. Journal of Nanotechnology Online, 3, 1–17.

    Google Scholar 

  47. Li, Y., Cheng, Y., & Xu, T. (2007). Design, synthesis and potent pharmaceutical applications of glycodendrimers: A mini review. Current Drug Discovery Technologies, 4, 246–254. doi:10.2174/157016307783220503.

    Article  CAS  Google Scholar 

  48. Cheng, Y., Wang, J., Rao, T., He, X., & Xu, T. (2008). Pharmaceutical applications of dendrimers: Promising nanocarriers for drug delivery. Frontiers in Bioscience, 13, 1447–1471. doi:10.2741/2774.

    Article  CAS  Google Scholar 

  49. Bawarski, W. E., Chidlowsky, E., Bharali, D. J., & Mousa, S. A. (2008). Emerging nanopharmaceuticals. Nanomedicine, 4, 273–282.

    Google Scholar 

  50. De Jong, W. H., & And Borm, P. J. (2008). Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 3, 133–149.

    Google Scholar 

  51. Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2005). Nanomedicine: Current status and future prospects. The FASEB Journal, 19, 311–330. doi:10.1096/fj.04-2747rev.

    Article  CAS  Google Scholar 

  52. Derfus, A. M., Chan, W. C., & Bhatia, S. N. (2004). Probing the cytotoxicity of semiconductor quantum dots. Nano Letters, 4, 11–18. doi:10.1021/nl0347334.

    Article  CAS  Google Scholar 

  53. Mecke, A., Uppuluri, S., Sassanella, T. M., Lee, D. K., Ramamoorthy, A., Baker, J. R., Jr, et al. (2004). Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chemistry and Physics of Lipids, 132, 3–14. doi:10.1016/j.chemphyslip.2004.09.001.

    Article  CAS  Google Scholar 

  54. Gettinger, S. (2008). Targeted therapy in advanced non-small-cell lung cancer. Seminars in Respiratory and Critical Care Medicine, 29(3), 291–301. doi:10.1055/s-2008-1076749.

    Article  Google Scholar 

  55. Patel, D. K. (2008). Clinical use of anti-epidermal growth factor receptor monoclonal antibodies in metastatic colorectal cancer. Pharmacotherapy, 28(11 pt 2), 31S–41S. doi:10.1592/phco.28.11-supp.31S.

    Article  CAS  Google Scholar 

  56. Dean-Colomb, W., & Esteva, F. J. (2008). Her2-positive breast cancer: Herceptin and beyond. European Journal of Cancer, 44(18), 2806–2812. doi:10.1016/j.ejca.2008.09.013.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaker A. Mousa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaRocque, J., Bharali, D.J. & Mousa, S.A. Cancer Detection and Treatment: The Role of Nanomedicines. Mol Biotechnol 42, 358–366 (2009). https://doi.org/10.1007/s12033-009-9161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9161-0

Keywords

Navigation