Skip to main content

Advertisement

Log in

Design and evaluation of a multiepitope vaccine for pancreatic cancer using immune-dominant epitopes derived from the signature proteome in expression datasets

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Pancreatic cancer is a highly aggressive and often lethal malignancy with limited treatment options. Its late-stage diagnosis and resistance to conventional therapies make it a significant challenge in oncology. Immunotherapy, particularly cancer vaccines, has emerged as a promising avenue for treating pancreatic cancer. Multi-epitope vaccines, designed to target multiple epitopes derived from various antigens associated with pancreatic cancer, have gained attention as potential candidates for improving therapeutic outcomes. In this study, we have explored transcriptomics and protein expression databases to identify potential upregulated proteins in pancreatic cancer cells. After examining a total of 21,054 proteins from various databases, it was discovered that 143 proteins expressed differently in malignant and healthy cells. The CTL, HTL and BCE epitopes were predicted for the shortlisted proteins. 51,840 vaccine constructs were created by concatenating CTL, HTL, and B-cell epitopes in the respective sequences. The best 86 structures were selected from a set of 51,840 designs after they were analyzed for vaxijenicity, allergenicity, toxicity, and antigenicity scores. In further simulation of the immune response using constructs, it was found that 41417, 37961, and 40841 constructs could produce a strong immune response when injected. Further, it was found that construct 37961 showed stronger interaction and stability with TLR-9 as determined from the large-scale molecular dynamics simulations. Moreover, the 37961 construct has shown interactions with TLR-9 suggests its potential in inducing immune response. In addition, construct 37961 has shown 100% predicted solubility in the E. coli expression system. Overall, the study indicates the designed construct 37961 has the potential to induce an anti-tumor immune response and long-standing protection pending further studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

    Article  PubMed  Google Scholar 

  3. Jones S, Zhang X, Parsons DW, Lin JC-H, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321(5897):1801–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hayashi A, Hong J, Iacobuzio-Donahue CA. The pancreatic cancer genome revisited. Nat Rev Gastroenterol Hepatol. 2021;18(7):469–81.

    Article  PubMed  Google Scholar 

  5. Gheorghe G, Diaconu CC, Ionescu V, Constantinescu G, Bacalbasa N, Bungau S, et al. Risk factors for pancreatic cancer: emerging role of viral hepatitis. J Personal Med. 2022;12(1):83.

    Article  Google Scholar 

  6. Wang DS, Chen DL, Ren C, Wang ZQ, Qiu MZ, Luo HY, et al. ABO blood group, hepatitis B viral infection and risk of pancreatic cancer. Int J Cancer. 2012;131(2):461–8.

    Article  CAS  PubMed  Google Scholar 

  7. Saung MT, Zheng L. Current standards of chemotherapy for pancreatic cancer. Clin Ther. 2017;39(11):2125–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–25.

    Article  CAS  PubMed  Google Scholar 

  9. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691–703.

    Article  Google Scholar 

  10. Pontén F, Jirström K, Uhlen M. The human protein atlas—a tool for pathology. J Pathol: J Pathol Soc Great Br Irel. 2008;216(4):387–93.

    Article  Google Scholar 

  11. Papatheodorou I, Fonseca NA, Keays M, Tang YA, Barrera E, Bazant W, et al. Expression atlas: gene and protein expression across multiple studies and organisms. Nucleic Acids Res. 2018;46(D1):D246–51.

    Article  CAS  PubMed  Google Scholar 

  12. Zeng J, Zhang Y, Shang Y, Mai J, Shi S, Lu M, et al. CancerSCEM: a database of single-cell expression map across various human cancers. Nucleic Acids Res. 2022;50(D1):D1147–55.

    Article  CAS  PubMed  Google Scholar 

  13. Tang G, Cho M, Wang X. OncoDB: an interactive online database for analysis of gene expression and viral infection in cancer. Nucleic Acids Res. 2022;50(D1):D1334–9.

    Article  CAS  PubMed  Google Scholar 

  14. Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 2022;50(W1):W228–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hallgren J, Tsirigos KD, Pedersen MD, Almagro Armenteros JJ, Marcatili P, Nielsen H, et al. (2022) DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. BioRxiv. 2022:2022.04. 08.487609

  16. Nielsen M, Andreatta M. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med. 2016;8(1):1–9.

    Article  Google Scholar 

  17. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020;48(W1):W449–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clifford JN, Høie MH, Deleuran S, Peters B, Nielsen M, Marcatili P. BepiPred-3.0: improved B-cell epitope prediction using protein language models. Protein Sci. 2022;31(12):e4497.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kolaskar AS, Tongaonkar PC. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 1990;276(1–2):172–4.

    Article  CAS  PubMed  Google Scholar 

  20. Dimitrov I, Flower DR, Doytchinova I. AllerTOP-a server for in silico prediction of allergens. BMC Bioinform. 2013. https://doi.org/10.1186/1471-2105-14-S6-S4.

    Article  Google Scholar 

  21. Morozov V, Rodrigues CH, Ascher DB. CSM-toxin: a web-server for predicting protein toxicity. Pharmaceutics. 2023;15(2):431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rapin N, Lund O, Bernaschi M, Castiglione F. Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS ONE. 2010;5(4):e9862.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stolfi P, Castiglione F, Mastrostefano E, Di Biase I, Di Biase S, Palmieri G, et al. In-silico evaluation of adenoviral COVID-19 vaccination protocols: assessment of immunological memory up to 6 months after the third dose. Front Immunol. 2022;13: 998262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ragone C, Manolio C, Cavalluzzo B, Mauriello A, Tornesello ML, Buonaguro FM, et al. Identification and validation of viral antigens sharing sequence and structural homology with tumor-associated antigens (TAAs). J Immunother Cancer. 2021. https://doi.org/10.1136/jitc-2021-002694.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19(6):679–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vaz J, Andersson R. Intervention on toll-like receptors in pancreatic cancer. World J Gastroenterol: WJG. 2014;20(19):5808.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et al. The ClusPro web server for protein–protein docking. Nat Protoc. 2017;12(2):255–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative protein modeling. Electrophoresis. 1997;18(15):2714–23.

    Article  CAS  PubMed  Google Scholar 

  30. Krüger DM, Ahmed A, Gohlke H. NMSim web server: integrated approach for normal mode-based geometric simulations of biologically relevant conformational transitions in proteins. Nucleic Acids Res. 2012;40(W1):W310–6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Agostini F, Cirillo D, Livi CM, Delli Ponti R, Tartaglia GG. cc SOL omics: a webserver for solubility prediction of endogenous and heterologous expression in Escherichia coli. Bioinformatics. 2014;30(20):2975–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grossberg AJ, Chu LC, Deig CR, Fishman EK, Hwang WL, Maitra A, et al. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA Cancer J Clin. 2020;70(5):375–403.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sigalov AB. New therapeutic strategies targeting transmembrane signal transduction in the immune system. Cell Adh Migr. 2010;4(2):255–67.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–10.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tyka MD, Keedy DA, André I, DiMaio F, Song Y, Richardson DC, et al. Alternate states of proteins revealed by detailed energy landscape mapping. J Mol Biol. 2011;405(2):607–18.

    Article  CAS  PubMed  Google Scholar 

  36. Gasteiger E, Hoogland C, Gattiker A, Se D, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. Totowa: Springer; 2005.

    Book  Google Scholar 

  37. Kara EE, Comerford I, Fenix KA, Bastow CR, Gregor CE, McKenzie DR, et al. Tailored immune responses: novel effector helper T cell subsets in protective immunity. PLoS Pathog. 2014;10(2): e1003905.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Finn OJ. Cancer vaccines: between the idea and the reality. Nat Rev Immunol. 2003;3(8):630–41.

    Article  CAS  PubMed  Google Scholar 

  39. Luo W, Yin Q. B cell response to vaccination. Immunol Invest. 2021;50(7):780–801.

    Article  CAS  PubMed  Google Scholar 

  40. Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 2020;9(3):34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nardin A, Abastado J-P. Macrophages and cancer. Front Biosci. 2008;13(3):494–505.

    Google Scholar 

  42. Burke JD, Young HA. IFN-γ: a cytokine at the right time, is in the right place. Semin Immunol. 2019. https://doi.org/10.1016/j.smim.2019.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Helminen O, Huhta H, Kauppila JH, Lehenkari PP, Saarnio J, Karttunen TJ. Localization of nucleic acid-sensing toll-like receptors in human and mouse pancreas. APMIS. 2017;125(2):85–92.

    Article  CAS  PubMed  Google Scholar 

  44. Pahlavanneshan S, Sayadmanesh A, Ebrahimiyan H, Basiri M. Toll-like receptor-based strategies for cancer immunotherapy. J Immunol Res. 2021;2021:1–14.

    Article  Google Scholar 

  45. Ruan M, Thorn K, Liu S, Li S, Yang W, Zhang C, et al. The secretion of IL-6 by CpG-ODN-treated cancer cells promotes T-cell immune responses partly through the TLR-9/AP-1 pathway in oral squamous cell carcinoma. Int J Oncol. 2014;44(6):2103–10.

    Article  CAS  PubMed  Google Scholar 

  46. Connor AA, Gallinger S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat Rev Cancer. 2022;22(3):131–42.

    Article  CAS  PubMed  Google Scholar 

  47. Pilla L, Rivoltini L, Patuzzo R, Marrari A, Valdagni R, Parmiani G. Multipeptide vaccination in cancer patients. Expert Opin Biol Ther. 2009;9(8):1043–55.

    Article  CAS  PubMed  Google Scholar 

  48. Ray SK, Mukherjee S. Altering landscape of cancer vaccines: unique platforms, research on therapeutic applications and recent patents. Recent Pat Anti-Cancer Drug Discovery. 2023;18(2):133–46.

    Article  CAS  Google Scholar 

  49. Gan L-L, Hii L-W, Wong S-F, Leong C-O, Mai C-W. Molecular mechanisms and potential therapeutic reversal of pancreatic cancer-induced immune evasion. Cancers. 2020;12(7):1872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. de Paula PL, da Luz FAC, dos Anjos PB, Brigido PC, de Araujo RA, Goulart LR, et al. Peptide vaccines in breast cancer: the immunological basis for clinical response. Biotechnol Adv. 2015;33(8):1868–77.

    Article  Google Scholar 

  51. Tamiola K, Acar B, Mulder FA. Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc. 2010;132(51):18000–3.

    Article  CAS  PubMed  Google Scholar 

  52. Saber MM, Monir N, Awad AS, Elsherbiny ME, Zaki HF. TLR9: a friend or a foe. Life Sci. 2022;307:120874.

    Article  CAS  PubMed  Google Scholar 

  53. Lin X, Ye L, Wang X, Liao Z, Dong J, Yang Y, et al. Follicular helper T cells remodel the immune microenvironment of pancreatic cancer via secreting CXCL13 and IL-21. Cancers. 2021;13(15):3678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. den Haan JM, Arens R, van Zelm MC. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells. Immunol Lett. 2014;162(2):103–12.

    Article  Google Scholar 

  55. Alshaker HA, Matalka KZ. IFN-γ, IL-17 and TGF-β involvement in shaping the tumor microenvironment: the significance of modulating such cytokines in treating malignant solid tumors. Cancer Cell Int. 2011;11(1):1–12.

    Article  Google Scholar 

Download references

Funding

SB acknowledges the National Institute of Technology Warangal for funding in the form of postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Saudagar.

Ethics declarations

Competing interests

The authors declare there is no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TXT 26264 KB)

Supplementary file2 (PDF 144 KB)

Supplementary file3 (MP4 44487 KB)

Supplementary file4 (XLSX 41 KB)

12032_2024_2334_MOESM5_ESM.jpg

Figure S1. Top vaccine constructs modelled structures with their corresponding Ramachandran plots. (A) 41417, (B) 40841, (C) 37385, (D) 37962, (E) 37937, (F) 37997, (G) 37386, (H) 51785 and (I) 37097. All of the constructs contains large random coil content and most residues are in disallowed regions. Supplementary file5 (JPG 6262 KB)

12032_2024_2334_MOESM6_ESM.jpg

Figure S2. Vaccine constructs solubility assessment for (A) 41417, (B) 40841, and (C) 37385 constructs determined from CCSol server. All of the constructs are highly soluble in E. coli system. Supplementary file6 (JPG 1453 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banesh, S., Patil, N., Chethireddy, V.R. et al. Design and evaluation of a multiepitope vaccine for pancreatic cancer using immune-dominant epitopes derived from the signature proteome in expression datasets. Med Oncol 41, 90 (2024). https://doi.org/10.1007/s12032-024-02334-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02334-4

Keywords

Navigation