Skip to main content
Log in

Advancements in biosensors for cancer detection: revolutionizing diagnostics

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cancer stands as the reigning champion of life-threatening diseases, casting a shadow with the highest global mortality rate. Unleashing the power of early cancer treatment is a vital weapon in the battle for efficient and positive outcomes. Yet, conventional screening procedures wield limitations of exorbitant costs, time-consuming endeavors, and impracticality for repeated testing. Enter bio-marker-based cancer diagnostics, which emerge as a formidable force in the realm of early detection, disease progression assessment, and ultimate cancer therapy. These remarkable devices boast a reputation for their exceptional sensitivity, streamlined setup requirements, and lightning fast response times. In this study, we embark on a captivating exploration of the most recent advancements and enhancements in the field of electrochemical marvels, targeting the detection of numerous cancer biomarkers. With each breakthrough, we inch closer to a future where cancer’s grip on humanity weakens, guided by the promise of personalized treatment and improved patient outcomes. Together, we unravel the mysteries that cancer conceals and illuminate a path toward triumph against this daunting adversary. This study celebrates the relentless pursuit of progress, where electrochemical innovations take center stage in the quest for a world free from the clutches of carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

© 2018 Elsevier B.V.)

Fig. 4

© 2020 Elsevier B.V.)

Fig. 5

(Adapted from Zouari et al. 2018 [150] under an ACS AuthorChoice License. © 2018 American Chemical Society)

Similar content being viewed by others

Data availability

All data is available in the script.

Abbreviations

AFP::

alpha-fetoprotein

CA125::

cancer antigen 125

CA15-3::

cancer antigen 15–3

CEA::

carcinoembryonic antigen

PSA::

prostate-specific antigen

WHO::

world health organization

EBs::

electrochemical biosensors

PCR::

polymerase chain reaction

RIA::

radioimmunoassay

ELISA::

enzyme-linked immunosorbent assay

HPLC::

high-performance liquid chromatography

PSA::

prostate-specific antigen

RF::

radio frequency

MW::

microwave

mmW::

millimeter wave

THz::

tetrahertz

EIS::

electrochemical impedance spectroscopy

DDPpy::

DNA dendrimers and polypyrrole

ITO::

indium-tin oxide

DNA::

deoxyribonucleic acid

CV::

cyclic voltammogram

EIS::

electrochemical impedance spectroscopy

GLC::

gas liquid chromatography VI

ROS::

reactive oxygen species

LPO::

lipid per oxidation

H2O2::

hydrogen peroxide

dsDNA::

double-strand DNA

ssDNA::

single-strand DNA

SPGEs::

screen-printed gold electrodes

BESs::

bio-electrochemical systems

HPLC::

high-performance liquid chromatography

GC–MS::

gas chromatography–mass spectrometry

LC–MS::

liquid chromatography–mass spectrometry

AFM::

atomic force microscopy

SEM::

scanning electron microscopy

TEM::

transmission electron microscopy

US EPA::

U.S. environmental protection agency

IARC::

international agency for research on cancer

SAW::

surface acoustic wave

References

  1. GBD. 2015 Mortality and causes of death collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global burden of disease study 2015. Lancet. 2016;388:1459–544.

    Article  Google Scholar 

  2. Do N, Grossman R, Feldman T, Fillmore N, Elbers D, Tuck D, Dhond R, et al. "The Veterans Precision Oncology Data Commons: transforming VA data into a national resource for research in precision oncology. In Sem Oncol. 2019;46(4–5):314–20.

    Article  Google Scholar 

  3. Horton S, Gauvreau CL. Cancer in Low- and Middle Income Countries: an Economic Overview. In: Gelband H, Jha P, Sankaranarayanan R, et al. editors. SourceCancer: Disease Control Priorities, Third Edition (Volume 3). Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2015 Nov. Chapter 16

  4. Nagai H, Kim YH. Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis. 2017;9(3):448.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li J, Li S, Yang CF. Electrochemical biosensors for cancer biomarker detection. Electroanalysis. 2012;24(12):2213–29.

    Article  CAS  Google Scholar 

  6. Goossens N, Nakagawa S, Sun X, Hoshida Y. Cancer biomarker discovery and validation. Transl Cancer Res. 2015;4(3):256–69. 

    Article  CAS  PubMed  Google Scholar 

  7. Khoury JD, Wang WL, Prieto VG, Medeiros LJ, Kalhor N, Hameed M, Broaddus R, Hamilton SR. Validation of immunohistochemical assays for integral biomarkers in the NCI-MATCH EAY131 clinical trial validation of IHC integral marker assays. Clin Cancer Res. 2018;24(3):521–31.

    Article  CAS  PubMed  Google Scholar 

  8. Ausch C, Kim YH, Tsuchiya KD, Dzieciatkowski S, Washington MK, Paraskeva C, Radich J, Grady WM. Comparative analysis of PCR-based biomarker assay methods for colorectal polyp detection from fecal DNA. Clin Chem. 2009;55(8):1559–63.

    Article  CAS  PubMed  Google Scholar 

  9. Geisler C, Gaisa NT, Pfister D, Fuessel S, Kristiansen G, Braunschweig T, Gostek S, Beine B, Diehl HC, Jackson AM, Borchers CH. Identification and validation of potential new biomarkers for prostate cancer diagnosis and prognosis using 2D-DIGE and MS. BioMed Res Int. 2015. 

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shlyapnikov YM, Malakhova EA, Vinarov AZ, Zamyatnin AA Jr, Shlyapnikova EA. Can new immunoassay techniques improve bladder cancer diagnostics with protein biomarkers? Front Mol Biosci. 2021;7:620687.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Al-Wajeeh AS, Salhimi SM, Al-Mansoub MA, Khalid IA, Harvey TM, Latiff A, Ismail MN. Comparative proteomic analysis of different stages of breast cancer tissues using ultra high performance liquid chromatography tandem mass spectrometer. PloS One. 2020;15(1):e0227404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu R, Sou K, Takeoka S. A rapid and highly sensitive biomarker detection platform based on a temperature-responsive liposome-linked immunosorbent assay. Sci Rep. 2020;10(1):1–11.

    Article  CAS  Google Scholar 

  13. Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological advancements in cancer diagnostics: improvements and limitations. Cancer Rep (Hoboken). 2023;6(2):e1764. 

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stobiecka M, Ratajczak K, Jakiela S. Toward early cancer detection: focus on biosensing systems and biosensors for an anti-apoptotic protein survivin and survivin mRNA. Biosens Bioelectron. 2019;137:58–71.

    Article  CAS  PubMed  Google Scholar 

  15. Bohunicky B, Mousa SA. Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl. 2010;30(4):1–10. 

    Article  CAS  Google Scholar 

  16. Arya S. K. and Estrela P., 2018 Recent advances in enhancement strategies for electrochemical ELISA-based immunoassays for cancer biomarker detection. Sensors (Switzerland), 18

  17. Ranjan R, Esimbekova EN, Kratasyuk VA. Rapid biosensing tools for cancer biomarkers. Biosens Bioelectron. 2017;87:918.

    Article  CAS  PubMed  Google Scholar 

  18. Mahato K, Kumar A, Maurya PK, Chandra P. Shifting paradigm of cancer diagnoses in clinically relevant samples based on miniaturized electrochemical nanobiosensors and microfluidic devices. Biosens Bioelectron. 2018;100:411.

    Article  CAS  PubMed  Google Scholar 

  19. Freitas M, Nouws HPA, Delerue-Matos C. Electrochemical biosensing in cancer diagnostics and follow-up. Electroanalysis. 2018;30:1576.

    Article  CAS  Google Scholar 

  20. Lassere MN. The biomarker-surrogacy evaluation schema: a review of the biomarker-surrogate literature and a proposal for a criterion-based, quantitative, multidimensional hierarchical levels of evidence schema for evaluating the status of biomarkers as surrogate endpoints. Stat Meth Med Res. 2008;17(3):303–40.

    Article  MathSciNet  Google Scholar 

  21. WHO. 2001 Biomarkers in risk assessment: Validity and validation. WHO

  22. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.

    Article  Google Scholar 

  23. Topkaya SN, Azimzadeh M, Ozsoz M. Electrochemical biosensors for cancer biomarkers detection: recent advances and challenges. Electroanalysis. 2016;28(7):1402–19.

    Article  CAS  Google Scholar 

  24. Cui F, Zhou Z, Zhou HS. Measurement and analysis of cancer biomarkers based on electrochemical biosensors. J Electrochem Soc. 2019;167(3):037525.

    Article  Google Scholar 

  25. Varol T. Ö. 2020 Electrochemical Sensors and Biosensors for the Detection of Cancer Biomarkers and Drugs. In: H. S. Tuli (eds) Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models. https://doi.org/10.1007/978-981-15-7586-0_2

  26. Sarhadi VK, Armengol G. Molecular biomarkers in cancer. Biomolecules. 2022;12(8):1021. 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu H, Xu Y, Xiang J, Long L, Green S, Yang Z, Zimdahl B, Lu J, Cheng N, Horan LH, Liu B. Targeting alpha-fetoprotein (AFP)–MHC complex with CAR T-cell therapy for liver cancer CAR T therapy against AFP for the treatment of liver cancer. Clin Cancer Res. 2017;23(2):478–88.

    Article  CAS  PubMed  Google Scholar 

  28. Qin YY, Wu YY, Xian XY, Qin JQ, Lai ZF, Liao L, Lin FQ. Single and combined use of red cell distribution width, mean platelet volume, and cancer antigen 125 for differential diagnosis of ovarian cancer and benign ovarian tumors. J Ovarian Res. 2018;11(1):1–6.

    Article  Google Scholar 

  29. Li X, Dai D, Chen B, Tang H, Xie X, Wei W. Clinicopathological and prognostic significance of cancer antigen 15–3 and carcinoembryonic antigen in breast cancer: a meta-analysis including 12,993 patients. Dis Mark. 2018. 

    Article  Google Scholar 

  30. Sekiguchi M, Matsuda T. Limited usefulness of serum carcinoembryonic antigen and carbohydrate antigen 19–9 levels for gastrointestinal and whole-body cancer screening. Sci Rep. 2020;10(1):1–10.

    Article  Google Scholar 

  31. Kelleher M, Singh R, O’Driscoll CM, Melgar S. Carcinoembryonic antigen (CEACAM) family members and inflammatory bowel disease. Cytokine Growth Factor Rev. 2019;47:21–31.

    Article  CAS  PubMed  Google Scholar 

  32. Betz, D. and Fane, K., 2018. Human chorionic gonadotropin (HCG). 2023 Aug 14. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023

  33. Nordström T, Akre O, Aly M, Grönberg H, Eklund M. Prostate-specific antigen (PSA) density in the diagnostic algorithm of prostate cancer. Prostate Cancer Prostat Diseas. 2018;21(1):57–63.

    Article  Google Scholar 

  34. Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev. 2015;115(19):10530–74. 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nikhil B, Pawan J, Nello F, Pedro E. Introduction to biosensors. Essays Biochem. 2016;60(1):1–8.

    Article  Google Scholar 

  36. Heineman WR, Jensen WB. Leland C. Clark Jr. (1918–2005). Biosens Bioelectron. 2006;8(21):1403–4.

    Article  Google Scholar 

  37. Cremer, M., 1906. Über die Ursache der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von den polyphasischen Elektrolytketten. R. Oldenbourg.

  38. Sörensen, S.P.L., 1909. Uber die Messung und die Bedeutung der Wasserstoffionenkonzentration bei enzymatischen Prozessen.

  39. Griffin EG, Nelson JM. The influence of certain substances on the activity of invertase. J Am Chem Soc. 1916;38(3):722–30.

    Article  CAS  Google Scholar 

  40. Nelson JM, Griffin EG. Adsorption of invertase. J American Chem Soc. 1916;38(5):1109–15.

    Article  CAS  Google Scholar 

  41. Hughes WS. The potential difference between glass and electrolytes in contact with the glass. J American Chem Soc. 1922;44(12):2860–7.

    Article  CAS  Google Scholar 

  42. Karunakaran, C., Rajkumar, R. and Bhargava, K., 2015. Introduction to biosensors. In Biosensors and bioelectronics (pp. 1–68). Elsevier.

  43. Heineman WR, Jensen WB. Leland c clark jr (1918–2005). Biosens Bioelectron. 2006;8(21):1403–4.

    Article  Google Scholar 

  44. Clark LC Jr, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann New York Acad Sci. 1962;102(1):29–45.

    Article  ADS  CAS  Google Scholar 

  45. Updike SJ, Hicks GP. The enzyme electrode. Nature. 1967;214:986–8.

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Guilbault GG, Montalvo JG Jr. Urea-specific enzyme electrode. J American Chem Soc. 1969;91(8):2164–5.

    Article  CAS  Google Scholar 

  47. Bergveld P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng. 1970;1:70–1.

    Article  Google Scholar 

  48. Guilbault GG, Lubrano GJ. An enzyme electrode for the amperometric determination of glucose. Analytica chimica acta. 1973;64(3):439–55.

    Article  CAS  PubMed  Google Scholar 

  49. Mosbach K, Danielsson B. An enzyme thermistor. Biochimica et Biophysica Acta (BBA)-Enzymology. 1974;364(1):140–5.

    Article  CAS  Google Scholar 

  50. Lübbers DW, Opitz N. The pCO2-/pO2-optode: a new probe for measurement of pCO2 or pO in fluids and gases (authors transl). Zeitschrift fur Naturforschung, Biosci. 1975;30(4):532–3.

    Article  Google Scholar 

  51. Newman JD, Turner AP. Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron. 2005;20(12):2435–53.

    Article  CAS  PubMed  Google Scholar 

  52. D’Orazio P. Biosensors in clinical chemistry. Clinica chimica acta. 2003;334(1–2):41–69.

    Article  CAS  Google Scholar 

  53. Suzuki S, Takahashi F, Satoh I, Sonobe N. Ethanol and lactic acid sensors using electrodes coated with dehydrogenase—Collagen membranes. Bullet Chem Soc Japan. 1975;48(11):3246–9.

    Article  CAS  Google Scholar 

  54. Clemens, A.H., Chang, P.H. and Myers, R.W., 1976. Le développement d’un système automatique d’infusion d’insuline controle par la glycemie, son système de dosage du glucose et ses algorithmes de controle. Journ. Annu. Diabétol. Hotel Dieu, pp.269–278.

  55. Yoo EH, Lee SY. Glucose biosensors: an overview of use in clinical practice. Sensors. 2010;10(5):4558–76.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  56. Schultz, J.S. 1982 Optical Sensor of Plasma Constituents. U.S. Patent No. 4,344,438A

  57. Liedberg B, Nylander C, Lunström I. Surface plasmon resonance for gas detection and biosensing. Sens Actuat. 1983;4:299–304.

    Article  CAS  Google Scholar 

  58. Roederer JE, Bastiaans GJ. Microgravimetric immunoassay with piezoelectric crystals. Analytic Chem. 1983;55(14):2333–6.

    Article  CAS  Google Scholar 

  59. Cass AE, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins IJ, Plotkin EV, Scott LD, Turner AP. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analyt Chem. 1984;56(4):667–71.

    Article  CAS  Google Scholar 

  60. Mun’delanji, C.V.; Tamiya, E. Nanobiosensors and nanobioanalyses: A Review. In Nanobiosensors and Nanobioanalyses, 1st ed.; Mun’delanji, C.V., Kerman, K., Hsing, I.M., Tamiya, E., Eds.; Springer: Tokyo, Japan, 2015; pp. 3–20.

  61. Poncharal P, Wang ZL, Ugarte D, De Heer WA. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science. 1999;283(5407):1513–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Serra, P.A. 2011. Biosensors for health, environment and biosecurity. BoD–Books on Demand. https://doi.org/10.5772/928

  63. Nayak V, Singh KR, Verma R, Pandey MD, Singh J, Singh RP. Recent advancements of biogenic iron nanoparticles in cancer theranostics. Mater Lett. 2022;313:131769.

    Article  CAS  Google Scholar 

  64. Chaturvedi VK, Sharma B, Tripathi AD, Yadav DP, Singh KR, Singh J, Singh RP. Biosynthesized nanoparticles: a novel approach for cancer therapeutics. Front Med Technol. 2023. 

    Article  PubMed  PubMed Central  Google Scholar 

  65. Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra BD. Recent advances in carbon based nanosystems for cancer theranostics. Biomater Sci. 2017;5(5):901–52.

    Article  CAS  PubMed  Google Scholar 

  66. Nisar S, Chansi Mathur A, Basu T, Singh KR, Singh J. Template free anisotropically grown gold nanocluster based electrochemical immunosensor for ultralow detection of cardiac troponin I. Biosensors. 2022;12(12):1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pundir CS, Chauhan N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: a review. Analyt Biochem. 2012;429(1):19–31.

    Article  CAS  PubMed  Google Scholar 

  68. Ogi H. Wireless-electrodeless quartz-crystal-microbalance biosensors for studying interactions among biomolecules: a review. Proc Jan Acad Ser B. 2013;89(9):401–17.

    Article  ADS  CAS  Google Scholar 

  69. Ko PJ, Ishikawa R, Sohn H, Sandhu A. Porous silicon platform for optical detection of functionalized magnetic particles biosensing. J Nanosci Nanotechnol. 2013;13(4):2451–60.

    Article  CAS  PubMed  Google Scholar 

  70. Vigneshvar S, Senthilkumaran B. Current technological trends in biosensors, nanoparticle devices and biolabels: Hi-tech network sensing applications. Med Dev Sens. 2018;1(2):e10011.

    Article  Google Scholar 

  71. Schneider E, Clark DS. Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens Bioelectron. 2013;39(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  72. Khimji I, Kelly EY, Helwa Y, Hoang M, Liu J. Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels. Methods. 2013;64(3):292–8.

    Article  CAS  PubMed  Google Scholar 

  73. Peng F, Su Y, Zhong Y, Fan C, Lee ST, He Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Accounts Chem Res. 2014;47(2):612–23.

    Article  CAS  Google Scholar 

  74. Wang B, Anzai JI. Recent progress in electrochemical HbA1c sensors: a review. Materials. 2015;8(3):1187–203.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  75. Randriamampita C, Lellouch AC. Imaging early signaling events in T lymphocytes with fluorescent biosensors. Biotechnol J. 2014;9(2):203–12.

    Article  CAS  PubMed  Google Scholar 

  76. Oldach L, Zhang J. Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. Chem Biol. 2014;21(2):186–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kunzelmann, S., Solscheid, C. and Webb, M.R., 2014. Fluorescent biosensors: design and application to motor proteins. Fluorescent Methods for Molecular Motors. Springer Basel. Basel. pp. 25–47

  78. Wang S, Poon GM, Wilson WD. Quantitative investigation of protein-nucleic acid interactions by biosensor surface plasmon resonance. Methods Mol Biol. 2015;1334:313–32. 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Garcia-Gomez NA, Balderas-Renteria I, Garcia-Gutierrez DI, Mosqueda HA, Sánchez EM. Development of mats composed by TiO2 and carbon dual electrospun nanofibers: a possible anode material in microbial fuel cells. Mater Sci Eng: B. 2015;193:130–6.

    Article  CAS  Google Scholar 

  80. Gribi S, Bois Du, de Dunilac S, Ghezzi D, Lacour SP. A microfabricated nerve-on-a-chip platform for rapid assessment of neural conduction in explanted peripheral nerve fibers. Nat Communicat. 2018;9(1):1–10.

    CAS  Google Scholar 

  81. Kim J, Campbell AS, de Ávila BEF, Wang J. Wearable biosensors for healthcare monitoring. Nat Biotechnol. 2019;37(4):389–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Saylan Y, Erdem Ö, Ünal S, Denizli A. An alternative medical diagnosis method: biosensors for virus detection. Biosensors. 2019;9(2):65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jiang Z, Feng B, Xu J, Qing T, Zhang P, Qing Z. Graphene biosensors for bacterial and viral pathogens. Biosens Bioelectron. 2020;166:112471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Inda ME, Lu TK. Microbes as biosensors. Annual Rev Microbiol. 2020;74:337–59.

    Article  CAS  Google Scholar 

  85. Jain S, Nehra M, Kumar R, Dilbaghi N, Hu T, Kumar S, Kaushik A, Li CZ. Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosens Bioelectron. 2021;179:113074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Karimi-Maleh H, Orooji Y, Karimi F, Alizadeh M, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK, Rajendran S. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelectron. 2021;184:113252.

    Article  CAS  PubMed  Google Scholar 

  87. Alwarappan S, Nesakumar N, Sun D, Hu TY, Li CZ. 2D metal carbides and nitrides (MXenes) for sensors and biosensors. Biosens Bioelectron. 2022. 

    Article  PubMed  Google Scholar 

  88. Kaur B, Kumar S, Kaushik BK. Recent advancements in optical biosensors for cancer detection. Biosens Bioelectron. 2022;197:113805.

    Article  CAS  PubMed  Google Scholar 

  89. Fu X, Ding B, D’Alessandro D. Fabrication strategies for metal-organic framework electrochemical biosensors and their applications. Coordinat Chem Rev. 2023;475:214814.

    Article  CAS  Google Scholar 

  90. Galyamin D, Liébana S, Esquivel JP, Sabaté N. Immuno-battery: a single use self-powered immunosensor for reassured diagnostics. Biosens Bioelectron. 2023;220:114868.

    Article  CAS  PubMed  Google Scholar 

  91. Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 2021;21(4):1109.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Coccia M, Roshani S, Mosleh M. Scientific developments and new technological trajectories in sensor research. Sensors. 2021;21(23):7803.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  93. Khan MA, Mujahid M. Recent advances in electrochemical and optical biosensors designed for detection of Interleukin 6. Sensors. 2020;20(3):646.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  94. Damborský P, Švitel J, Katrlík J. Optical biosensors. Essays Biochem. 2016;60(1):91–100.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kurbanoglu S, et al. Chemical nanosensors in pharmaceutical analysis. In: New developments in nanosensors for pharmaceutical analysis. Amsterdam: Elsevier; 2019. p. 141–70.

    Chapter  Google Scholar 

  96. Qian L, Li Q, Baryeh K, Qiu W, Li K, Zhang J, Yu Q, Xu D, Liu W, Brand RE, Zhang X. Biosensors for early diagnosis of pancreatic cancer: a review. Trans Res. 2019;213:67–89.

    Article  CAS  Google Scholar 

  97. Chang J, Wang X, Wang J, Li H, Li F. Nucleic acid-functionalized metal-organic framework-based homogeneous electrochemical biosensor for simultaneous detection of multiple tumor biomarkers. Anal Chem. 2019;91:3604–10. 

    Article  CAS  PubMed  Google Scholar 

  98. Zhang X, Xie G, Gou D, Luo P, Yao Y, Chen H. A novel enzyme-free electrochemical biosensor for rapid detection of Pseudomonas aeruginosa based on high catalytic Cu-ZrMOF and conductive Super P. Biosens Bioelectron. 2019;142:111486. 

    Article  CAS  PubMed  Google Scholar 

  99. Zhang X, Yu Y, Shen J, Qi W, Wang H. Design of organic/inorganic nanocomposites for ultrasensitive electrochemical detection of a cancer biomarker protein. Talanta. 2020;212:120794. 

    Article  CAS  PubMed  Google Scholar 

  100. Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: a review. Talanta. 2020;206:120251. 

    Article  CAS  PubMed  Google Scholar 

  101. Vijayan VM, Jothi L, Arunagirinathan RS, Nageswaran G. Recent advances in the electrochemical sensing of lung cancer biomarkers. Biosens Bioelectron: X. 2022;12:100235. 

    Article  CAS  Google Scholar 

  102. da Silva ET, Souto DE, Barragan JT, De Giarola J, De Moraes AC, Kubota LT. Electrochemical biosensors in point-of-care devices: recent advances and future trends. Chemelectrochem. 2017;4(4):778–94.

    Article  Google Scholar 

  103. Sandhyarani N. Surface modification methods for electrochemical biosensors. In: Electrochemical biosensors. Amsterdam: Elsevier; 2019. p. 45–75.

    Chapter  Google Scholar 

  104. Scholz F. Voltammetric techniques of analysis: the essentials. ChemTexts. 2015;1(4):17.

    Article  Google Scholar 

  105. Anik Ü. Electrochemical medical biosensors for POC applications. In: Medical biosensors for point of care (POC) applications. Amsterdam: Elsevier; 2017. p. 275–92.

    Chapter  Google Scholar 

  106. Luo Y, Wang Y, Yan H, Wu Y, Zhu C, Du D, Lin Y. SWCNTs@GQDs composites as nanocarriers for enzyme-free dual-signal amplification electrochemical immunoassay of cancer biomarker. Anal Chim Acta. 2018;1042:44–51. 

    Article  CAS  PubMed  Google Scholar 

  107. Paimard G, et al. An Impedimetric Immunosensor modified with electrospun core-shell nanofibers for determination of the carcinoma embryonic antigen. Sens Actuat B Chem. 2020;311:127928.

    Article  CAS  Google Scholar 

  108. Butmee P, et al. An ultrasensitive immunosensor based on manganese dioxide-graphene nanoplatelets and core shell Fe3O4@ Au nanoparticles for label-free detection of carcinoembryonic antigen. Bioelectrochemistry. 2020;132:107452.

    Article  CAS  PubMed  Google Scholar 

  109. Ehzari H, Amiri M, Safari M. Enzyme-free sandwich-type electrochemical immunosensor for highly sensitive prostate specific antigen based on conjugation of quantum dots and antibody on surface of modified glassy carbon electrode with core–shell magnetic metal-organic frameworks. Talanta. 2020;210:120641.

    Article  CAS  PubMed  Google Scholar 

  110. Heidari R, Rashidiani J, Abkar M, Taheri RA, Moghaddam MM, Mirhosseini SA, Seidmoradi R, Nourani MR, Mahboobi M, Keihan AH, Kooshki H. CdS nanocrystals/graphene oxide-AuNPs based electrochemiluminescence immunosensor in sensitive quantification of a cancer biomarker: p53. Biosens Bioelectron. 2019;126:7–14. 

    Article  CAS  PubMed  Google Scholar 

  111. Jeong S, Barman SC, Yoon H, Park JY. A Prostate cancer detection immunosensor based on nafion/reduced graphene oxide/aldehyde functionalized methyl pyridine composite electrode. J Electrochem Soc. 2019;166:B920.

    Article  CAS  Google Scholar 

  112. Ibau C, Arshad MK, Gopinath SCB, Nuzaihan Fathil MMF, Estrela P. Gold interdigitated triple-microelectrodes for label-free prognosticative aptasensing of prostate cancer biomarker in serum. Biosens Bioelectron. 2019;136:118.

    Article  CAS  PubMed  Google Scholar 

  113. Sharifuzzaman M, Barman SC, Rahman MT, Zahed MA, Xuan X, Park JY. Green synthesis and layer-by-layer assembly of amino-functionalized graphene oxide/carboxylic surface modified trimetallic nanoparticles nanocomposite for label-free electrochemical biosensing. J Electrochem Soc. 2019;166:B983.

    Article  CAS  Google Scholar 

  114. Jafari-Kashi A, Rafiee-Pour HA, Shabani-Nooshabadi M. A new strategy to design label-free electrochemical biosensor for ultrasensitive diagnosis of CYFRA 21–1 as a biomarker for detection of non-small cell lung cancer. Chemosphere. 2022;301:134636.

    Article  CAS  PubMed  Google Scholar 

  115. Chen M, Wang Y, Su H, Mao L, Jiang X, Zhang T, Dai X. Three-dimensional electrochemical DNA biosensor based on 3D graphene-Ag nanoparticles for sensitive detection of CYFRA21-1 in non-small cell lung cancer. Sens Actuat B: Chem. 2018;255:2910–8.

    Article  CAS  Google Scholar 

  116. Zeng Y, Bao J, Zhao Y, Huo D, Chen M, Yang M, Fa H, Hou C. A sensitive label-free electrochemical immunosensor for detection of cytokeratin 19 fragment antigen 21–1 based on 3D graphene with gold nanoparticle modified electrode. Talanta. 2018;178:122–8.

    Article  CAS  PubMed  Google Scholar 

  117. Shi P, et al. Non-covalent modification of glassy carbon electrode with isoorientin and application to alpha-fetoprotein detection by fabricating an immunosensor. Sens Actuat B Chem. 2020;305:127494.

    Article  CAS  Google Scholar 

  118. Zhang X, Li Y, Lv H, Gao Z, Zhang C, Zhang S, Wang Y, Xu Z, Zhao Z. Electrochemical immunosensor with enhanced stability for sensitive detection of α-fetoprotein based on Pd@Ag@CeO2 as signal amplification label. J Electrochem Soc. 2018;165:B931.

    Article  CAS  Google Scholar 

  119. Zhang X, et al. Sandwich-type electrochemical immunosensor based on Au@ Ag supported on functionalized phenolic resin microporous carbon spheres for ultrasensitive analysis of α-fetoprotein. Biosens Bioelectron. 2018;106:142–8.

    Article  CAS  PubMed  Google Scholar 

  120. Ma E, et al. Electrochemical immunosensors for sensitive detection of neuron-specific enolase based on small size trimetallic Au@ Pd^Pt nanocubes functionalized on ultrathin MnO2 nanosheets as signal labels. ACS Biomater Sci Eng. 2020;6(3):1418–27.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  121. Zhao L, Kong D, Wu Z, Liu G, Gao Y, Yan X, Liu F, Liu X, Wang C, Cui J, Lu G. Interface interaction of MoS2 nanosheets with DNA based aptameric biosensor for carbohydrate antigen 15–3 detection. Microchem J. 2020;155:104675.

    Article  CAS  Google Scholar 

  122. Khoshroo A, Mazloum-Ardakani M, Forat-Yazdi M. Enhanced performance of labelfree electrochemical immunosensor for carbohydrate antigen 15–3 based on catalytic activity of cobalt sulfide/graphene nanocomposite. Sens Actuat B Chem. 2018;255:580–7.

    Article  CAS  Google Scholar 

  123. Senel M, Dervisevic M, Kokkokoğlu F. Electrochemical DNA biosensors for label-free breast cancer gene marker detection. Analyt Bioanalytic Chem. 2019;411(13):2925–35.

    Article  CAS  Google Scholar 

  124. Saadati A, et al. A novel biosensor for the monitoring of ovarian cancer tumor protein CA 125 in untreated human plasma samples using a novel nano-ink: a new platform for efficient diagnosis of cancer using paper based microfluidic technology. Anal Methods. 2020;12(12):1639–49.

    Article  MathSciNet  CAS  Google Scholar 

  125. Chauhan D, Nohwal B, Pundir C. An electrochemical CD59 targeted noninvasive immunosensor based on graphene oxide nanoparticles embodied pencil graphite for detection of lung cancer. Microchem J. 2020;156:104957.

    Article  Google Scholar 

  126. Jalil O, Pandey CM, Kumar D. Electrochemical biosensor for the epithelial cancer biomarker EpCAM based on reduced graphene oxide modified with nanostructured titanium dioxide. Microchim Acta. 2020;187:1–9.

    Article  Google Scholar 

  127. Li X, Peng G, Cui F, Qiu Q, Chen X, Huang H. Double determination of long noncoding RNAs from lung cancer via multi-amplified electrochemical genosensor at sub-femtomole level. Biosens Bioelectron. 2018;113:116–23.

    Article  CAS  PubMed  Google Scholar 

  128. Jayanthi VSPKSA, Das AB, Saxena U. Fabrication of an immunosensor for quantitative detection of breast cancer biomarker UBE2C. RSC Adv. 2019;9:16738.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Xu W, et al. A signal-decreased electrochemical immunosensor for the sensitive detection of LAG-3 protein based on a hollow nanobox-MOFs/AuPt alloy. Biosens Bioelectron. 2018;113:148–56.

    Article  CAS  PubMed  Google Scholar 

  130. Kuntamung K, Jakmunee J, Ounnunkad K. A label-free multiplex electrochemical biosensor for the detection of three breast cancer biomarker proteins employing dye/metal ion-loaded and antibody-conjugated polyethyleneimine-gold nanoparticles. J Mater Chem B. 2021;9(33):6576–85.

    Article  CAS  PubMed  Google Scholar 

  131. Shoja Y, Kermanpur A, Karimzadeh F. Diagnosis of EGFR exon21 L858R point mutation as lung cancer biomarker by electrochemical DNA biosensor based on reduced graphene oxide/functionalized ordered mesoporous carbon/Ni-oxytetracycline metallopolymer nanoparticles modified pencil graphite electrode. Biosens Bioelectron. 2018;113:108–15.

    Article  CAS  PubMed  Google Scholar 

  132. Amani J, et al. An electrochemical immunosensor based on poly p-phenylenediamine and graphene nanocomposite for detection of neuron-specific enolase via electrochemically amplified detection. Anal Biochem. 2018;548:53–9.

    Article  CAS  PubMed  Google Scholar 

  133. Khodadoust A, Nasirizadeh N, Seyfati SM, Taheri RA, Ghanei M, Bagheri H. High-performance strategy for the construction of electrochemical biosensor for simultaneous detection of miRNA-141 and miRNA-21 as lung cancer biomarkers. Talanta. 2023;252:123863.

    Article  CAS  PubMed  Google Scholar 

  134. Sabahi A, Salahandish R, Ghaffarinejad A, Omidinia E. Electrochemical nano-genosensor for highly sensitive detection of miR-21 biomarker based on SWCNT-grafted dendritic Au nanostructure for early detection of prostate cancer. Talanta. 2020;209:120595. 

    Article  CAS  PubMed  Google Scholar 

  135. Hasanzadeh M, Shadjou N, de la Guardia M. Early-stage screening of breast cancer using electrochemical biomarker detection. TrAC - Trends Anal Chem. 2017;91:67.

    Article  CAS  Google Scholar 

  136. Raji MA, Amoabediny G, Tajik P, Hosseini M, Ghafar-Zadeh E. An aptabiosensor for colon cancer diagnostics. Sensors (Switzerland). 2015;15:22291.

    Article  ADS  CAS  Google Scholar 

  137. Zeng Y, Bao J, Zhao Y, Huo D, Chen M, Qi Y, Yang M, Fa H, Hou C. A sandwich-type electrochemical immunoassay for ultrasensitive detection of non-small cell lung cancer biomarker CYFRA21-1. Bioelectrochemistry. 2018;120:183–9. 

    Article  CAS  PubMed  Google Scholar 

  138. Freitas M, Nouws HPA, Keating E, Delerue-Matos C. High-performance electrochemical immunomagnetic assay for breast cancer analysis. Sens Actuat B Chem. 2020;308:127667. 

    Article  CAS  Google Scholar 

  139. Boriachek K, Umer M, Islam MN, Gopalan V, Lam AK, Nguyen NT, Shiddiky MJA. An amplification-free electrochemical detection of exosomal miRNA-21 in serum samples. Analyst. 2018;143:1662–9. 

    Article  ADS  CAS  PubMed  Google Scholar 

  140. Pacheco JG, Rebelo P, Freitas M, Nouws HPA, Delerue-Matos C. Breast cancer biomarker (HER2-ECD) detection using a molecularly imprinted electrochemical sensor. Sens Actuat B Chem. 2018;273:1008–14. 

    Article  CAS  Google Scholar 

  141. Pacheco JG, Silva MSV, Freitas M, Nouws HPA, Delerue-Matos C. Molecularly imprinted electrochemical sensor for the point-of-care detection of a breast cancer biomarker (CA 15–3). Sensor Actuator B Chem. 2018;256:905–12. 

    Article  CAS  Google Scholar 

  142. An L, Wang G, Han Y, Li T, Jin P, Liu S. Electrochemical biosensor for cancer cell detection based on a surface 3D micro-array. Lab Chip. 2018;18:335.

    Article  CAS  PubMed  Google Scholar 

  143. Zandi A, Gilani A, Abbasvandi F, Katebi P, Tafti SR, Assadi S, Moghtaderi H, Parizi MS, Saghafi M, Khayamian MA, Davarish Z, Hoseinpour P, Gity M, Sanati H, Abdolahad M. Carbon nanotube based dielectric spectroscopy of tumor secretion; electrochemical lipidomics for cancer diagnosis. Biosens Bioelectron. 2019;142:111566.

    Article  CAS  PubMed  Google Scholar 

  144. Dowling CM, Herranz Ors C, Kiely PA. Using real-time impedance-based assays to monitor the effects of fibroblast-derived media on the adhesion, proliferation, migration and invasion of colon cancer cells. Biosci Rep. 2014;34:415.

    Article  CAS  Google Scholar 

  145. Parekh A, Das D, Das S, Dhara S, Biswas K, Mandal M, Das S. Bioimpedimetric analysis in conjunction with growth dynamics to differentiate aggressiveness of cancer cells. Sci Rep. 2018;8:1.

    Article  CAS  Google Scholar 

  146. Xiao F, Wang L, Duan H. Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites. Biotechnol Adv. 2016;34(3):234–49.

    Article  CAS  PubMed  Google Scholar 

  147. Cardoso AR, et al. Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer. Biosens Bioelectron. 2016;80:621–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nayak V, Patra S, Singh KR, Ganguly B, Kumar DN, Panda D, Maurya GK, Singh J, Majhi S, Sharma R, Pandey SS. Advancement in precision diagnosis and therapeutic for triple-negative breast cancer: Harnessing diagnostic potential of CRISPR-cas & engineered CAR T-cells mediated therapeutics. Environ Res. 2023;235:116573. 

    Article  CAS  PubMed  Google Scholar 

  149. Luo L, Wang L, Zeng L, Wang Y, Weng Y, Liao Y, Chen T, Xia Y, Zhang J, Chen J. A ratiometric electrochemical DNA biosensor for detection of exosomal MicroRNA. Talanta. 2020;207:120298. 

    Article  CAS  PubMed  Google Scholar 

  150. Zouari M, Campuzano S, Pingarrón JM, Raouafi N. Amperometric biosensing of miRNA-21 in serum and cancer cells at nanostructured platforms using anti-DNA-RNA hybrid antibodies. ACS Omega. 2018;3(8):8923–31. 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Deswal R, Narwal V, Kumar P, Verma V, Dang AS, Pundir CS. An improved amperometric sarcosine biosensor based on graphene nanoribbon/chitosan nanocomposite for detection of prostate cancer. Sensors Int. 2022;3:100174. 

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Chemistry, Faculty of Science, University of Tabuk, Saudi Arabia, for their ardent encouragement of their current project.

Funding

This research received no external funding (self-funded).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Syed Khalid Mustafa or Sadanand Pandey.

Ethics declarations

Competing interests

The authors declares no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, S.K., Khan, M.F., Sagheer, M. et al. Advancements in biosensors for cancer detection: revolutionizing diagnostics. Med Oncol 41, 73 (2024). https://doi.org/10.1007/s12032-023-02297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02297-y

Keywords

Navigation