Skip to main content

Advertisement

Log in

Cancer stemness kinase inhibitor amcasertib: a promising therapeutic agent in ovarian cancer stem and cancer cell models with different genetic profiles

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Ovarian cancer, often referred to as the ‘silent killer,’ is a significant contributor to mortality rates. Emerging evidence implicates Nanog as a potential therapeutic target in ovarian cancer. Amcasertib (BBI-503) is an orally administered primary class stemness kinase inhibitor that effectively targets NANOG and various cancer stem cell pathways by specifically inhibiting serine-threonine stemness kinases. This study aimed to evaluate the antineoplastic effects of Nanog inhibition, a critical transcription factor associated with pluripotency and its role in ovarian cancer tumorigenesis, using the novel therapeutic agent Amcasertib in ovarian cancer cells characterized by distinct genetic profiles. The cytotoxicity of Amcasertib was assessed in both ovarian cancer and cancer stem cell models utilizing the Xelligence-RTCA system. The impact of the determined IC50 dose on apoptosis, invasion, migration, epithelial-mesenchymal transition (EMT), cell cycle progression, colony formation, and spheroid growth was evaluated using appropriate analytical techniques. Our findings revealed that Amcasertib exhibited significant antiproliferative effects and induced apoptosis in ovarian cancer and cancer stem cells. Moreover, Amcasertib caused G1 phase arrest and impeded colony formation in MDAH-2774 cells. Additionally, Amcasertib effectively inhibited spheroid growth in OVCAR-3 and OCSC cells. Notably, it demonstrated the ability to suppress invasion and migration in MDAH-2774 and OCSC cells. Furthermore, the suppression of Nanog-mediated stem cell-like features by Amcasertib was particularly pronounced in ER-negative ovarian cancer and cancer stem cells, highlighting its high anticancer efficacy in this subgroup. These results suggest that Amcasertib holds promise as a potential standalone or combination therapy agent for the treatment of ER-negative ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Desai A. Epithelial ovarian cancer: an overview. World J Transl Med. 2014;3(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Deb B, Uddin A, Chakraborty S. miRNAs and ovarian cancer: an overview. J Cell Physiol. 2018;233(5):3846–54.

    Article  PubMed  CAS  Google Scholar 

  4. Roett MA, Evans P. Ovarian cancer: an overview. Am Fam Physician. 2009;80(6):609–16.

    PubMed  Google Scholar 

  5. Klotz DM, Wimberger P. Cells of origin of ovarian cancer: ovarian surface epithelium or fallopian tube? Arch Gynecol Obstet. 2017;296(6):1055–62.

    Article  PubMed  Google Scholar 

  6. Banerjee S, Kaye SB. New strategies in the treatment of ovarian cancer: current clinical perspectives and future potential. Clin Cancer Res. 2013;19(5):961–8.

    Article  PubMed  CAS  Google Scholar 

  7. Longuespée R, Boyon C, Desmons A, Vinatier D, Leblanc E, Farré I, et al. Ovarian cancer molecular pathology. Cancer Metastasis Rev. 2012;31(3–4):713–32.

    Article  PubMed  Google Scholar 

  8. Jelovac D, DK A. Recent progress in the diagnosis and treatment of ovarian cancer. CA Cancer J Clin. 2011;61(3):183–203.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gong S, Li Q, Jeter CR, Fan Q, Tang DG, Liu B. Regulation of NANOG in cancer cells. Mol Carcinog. 2015;54(9):679–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chen W, Dong J, Haiech J, Kilhoffer MC, Zeniou M. Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem Cells Int. 2016;2016:1–16.

    Google Scholar 

  11. Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine. 2012;7(4):597–615.

    Article  PubMed  CAS  Google Scholar 

  12. Liu HD, Xia BR, Jin MZ, Lou G. Organoid of ovarian cancer: genomic analysis and drug screening. Clin Transl Oncol. 2020;22(8):1240–51. https://doi.org/10.1007/s12094-019-02276-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sonbol MB, Ahn DH, Bekaii-Saab T. Therapeutic targeting strategies of cancer stem cells in gastrointestinal malignancies. Biomedicines. 2019;7(1):147.

    Article  Google Scholar 

  14. Jeter CR, Yang T, Wang J, Chao H, Dean G, Park S, et al. NANOG in cancer stem cells and tumor development: an update and outstanding questions. Stem Cells. 2016;33(8):2381–90.

    Article  Google Scholar 

  15. OzdemirKutbay N, BirayAvci C, SarerYurekli B, Caliskan Kurt C, Shademan B, Gunduz C, Erdogan M. Effects of metformin and pioglitazone combination on apoptosis and AMPK/mTOR signaling pathway in human anaplastic thyroid cancer cells. J Biochem Mol Toxicol. 2020;34(10): e22547.

    Article  CAS  Google Scholar 

  16. Sogutlu F, Kayabasi C, Yelken BO, Asik A, Gasimli R, Kipcak S, Susluer SY, Avci CB, Gunduz C. The evaluation of effect of aurora kinase inhibitor CCT137690 in melanoma and melanoma cancer stem cell. Anti-Cancer Agents in Med Chem. 2021;21(12):1564–74.

    Article  CAS  Google Scholar 

  17. Foty R. A simple hanging drop cell culture protocol for generation of 3D spheroids. JoVE. 2011;51: e2720.

    Google Scholar 

  18. Ottevanger PB. Ovarian cancer stem cells more questions than answers. Seminars in Cancer Biol. 2017;44:67–71.

    Article  CAS  Google Scholar 

  19. Budiana ING, Angelina M, Pemayun TGA. Ovarian cancer: pathogenesis and current recommendations for prophylactic surgery. J Turkish-German Gynecol Assoc. 2019;20(1):47–54.

    Article  Google Scholar 

  20. Cho KR, Shih IM. Ovarian cancer. Annu Rev Pathol Mech Dis. 2009;4(4):287–313.

    Article  CAS  Google Scholar 

  21. Hubbard JM, Grothey A. Napabucasin: an update on the first-in-class cancer stemness inhibitor. Drugs. 2017;77(10):1091–103.

    Article  PubMed  CAS  Google Scholar 

  22. Jin X, Jin X, Kim H. Cancer stem cells and differentiation therapy. Tumor Biol. 2017;39(10):1–11.

    Article  Google Scholar 

  23. Aponte PM, Caicedo A. Stemness in cancer: Stem cells, cancer stem cells, and their microenvironment. Stem Cells Int. 2017;2017:1–17.

    Article  Google Scholar 

  24. Lathia JD, Liu H. Overview of cancer stem cells and stemness for community oncologists. Target Oncol. 2017;12(4):387–99.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jeter CR, Yang T, Wang J, Chao HP, Tang DG. Concise review: NANOG in cancer stem cells and tumor development: an update and outstanding questions. Stem Cells. 2015;33(8):2381–90.

    Article  PubMed  CAS  Google Scholar 

  26. Jia Z, Zhang Y, Yan A, Wang M, Han Q, Wang K, et al. 1,25-dihydroxyvitamin D3 signaling-induced decreases in IRX4 inhibits NANOG-mediated cancer stem-like properties and gefitinib resistance in NSCLC cells. Cell Death Dis. 2020. https://doi.org/10.1038/s41419-020-02908-w.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mahalaxmi I, Devi SM, Kaavya J, Arul N, Balachandar V, Santhy KS. New insight into NANOG: a novel therapeutic target for ovarian cancer (OC). Eur J Pharmacol. 2019;852:51–7. https://doi.org/10.1016/j.ejphar.2019.03.003.

    Article  PubMed  CAS  Google Scholar 

  28. Liu S, Sun J, Cai B, Xi X, Yang L, Zhang Z, et al. NANOG regulates epithelial-mesenchymal transition and chemoresistance through activation of the STAT3 pathway in epithelial ovarian cancer. Tumor Biol. 2016;37(7):9671–80. https://doi.org/10.1007/s13277-016-4848-x.

    Article  CAS  Google Scholar 

  29. Siu MKY, Wong ESY, Kong DSH, Chan HY, Jiang L, Wong OGW, et al. Stem cell transcription factor NANOG controls cell migration and invasion via dysregulation of E-cadherin and FoxJ1 and contributes to adverse clinical outcome in ovarian cancers. Oncogene. 2013;32(30):3500–9.

    Article  PubMed  CAS  Google Scholar 

  30. Cote GM, Chau NG, Spira AI, Edenfield WJ, Laurie SA, Richards DA, Richey SL, Gao Y, Li Y, Li W, Hitron M. A phase 1b/2 study of amcasertib, a first-in-class cancer stemness kinase inhibitor in advanced head and neck cancer. J Clin Oncol. 2017;35:6032.

    Article  Google Scholar 

  31. Cote GM, Edenfield WJ, Laurie SA, Chau NG, Becerra C, Spira AI, Li Y, Li W, Hitron M, Li C. A phase 1b/2 study of amcasertib, a first-in-class cancer stemness kinase inhibitor, in advanced adenoid cystic carcinoma. J Clin Oncol. 2017;35:6036.

    Article  Google Scholar 

  32. El-Rayes BF, Richards DA, Cohn AL, Richey SL, Feinstein T, Kundranda MN, El-Khoueiry AB, Melear JM, Braiteh FS, Hitron M, Ortuzar WF. BBI608–503–103HCC: A phase Ib/II clinical study of napabucasin (BBI608) in combination with sorafenib or amcasertib (BBI503) in combination with sorafenib (Sor) in adult patients with hepatocellular carcinoma (HCC). J Clin Oncol. 2017;35:4077.

    Article  Google Scholar 

Download references

Funding

Funding was provided by TUBITAK (Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, Grant No. 118S177).

Author information

Authors and Affiliations

Authors

Contributions

HGK: Study conceptualization, methodology, research, first draft creation. NPO: Study conceptualization, research, methodology, first draft creation. AA: Study conceptualization, methodology, research, statistical analysis. CG: Statistical analysis, supervision, writing—review & editing.

Corresponding author

Correspondence to Hale Guler Kara.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Ethical approval

Ethical approval was not obtained for this manuscript as it was not a human particapiants or animal study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guler Kara, H., Ozates, N.P., Asik, A. et al. Cancer stemness kinase inhibitor amcasertib: a promising therapeutic agent in ovarian cancer stem and cancer cell models with different genetic profiles. Med Oncol 40, 342 (2023). https://doi.org/10.1007/s12032-023-02210-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02210-7

Keywords

Navigation