Skip to main content

Advertisement

Log in

In vitro siRNA-mediated GPX4 and AKT1 silencing in oxaliplatin resistance cancer cells induces ferroptosis and apoptosis

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Oxaliplatin is a member of platinum-based chemotherapy drugs frequently used in colorectal cancer (CRC). However, resistance to oxaliplatin causes tumor progression and metastasis. Akt1 and Gpx4 are essential regulator genes of apoptosis and ferroptosis pathways. Inhibition of these genes might eradicate oxaliplatin resistance in resistant CRC cells. We compared two cell death strategies to reverse drug resistance in Caco-2 and HT-29 oxaliplatin-resistant cell lines. We used the AKT1-specific siRNA to induce apoptosis. Also, GPX4-specific siRNA and FIN56 were utilized to generate ferroptosis. The effect of these treatments was assessed by reactive oxygen species (ROS) formation, cell viability, and protein expression level assays. Besides, the expression of GPX4, CoQ10, and NRF2 was assessed in both cell lines after treatments. Correctly measuring the expression of these responsible genes and proteins confirms the occurrence of different types of cell death. In addition, the ability of Akt1/ GPX4 siRNA in resensitizing HT-29 and Caco-2 oxaliplatin resistance cells was evaluated. Our finding showed that the upregulation of GPX4/siRNA caused a reduction in GPX4 and CoQ10 expressions in both cell lines. However, the expression level of NRF2 showed the same level in our cell lines, so we observed a downregulation of NRF2 in resistant CRC cell lines. Cell viability assay indicated that induction of ferroptosis by GPX4/siRNA or FIN56 and apoptosis by Akt1/siRNA in resistant cell lines could reverse the oxaliplatin resistance. We concluded that downregulation of Akt1 or Gpx4 could increase the efficacy of oxaliplatin to overcome the resistance compared to FIN56.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Gastroenterology Review. 2019;14(2):89–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Quiroz-Reyes AG, Islas JF, Delgado-Gonzalez P, Franco-Villarreal H, Garza-Treviño EN. Therapeutic approaches for metastases from colorectal cancer and pancreatic ductal carcinoma. Pharmaceutics. 2021;13(1):103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang W, Zhu Y, Yu H, Liu X, Jiao B, Lu X. Libertellenone H, a natural pimarane diterpenoid, inhibits thioredoxin system and induces ROS-mediated apoptosis in human pancreatic cancer cells. Molecules. 2021;26(2):315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abraham JP, Magee D, Cremolini C, Antoniotti C, Halbert DD, Xiu J, Stafford P, Berry DA, Oberley MJ, Shields AF, Marshall JL, Salem ME, Falcone A, Grothey A, Hall MJ, Venook AP, Lenz H-J, Helmstetter A, Korn WM, Spetzler DB. Clinical validation of a machine-learning–derived signature predictive of outcomes from first-line oxaliplatin-based chemotherapy in advanced colorectal cancer. Clin Cancer Res. 2021;27(4):1174–83.

    Article  CAS  PubMed  Google Scholar 

  5. Andreidesz K, Koszegi B, Kovacs D, Vantus VB, Gallyas F, Kovacs K. Effect of oxaliplatin, olaparib and LY294002 in combination on triple-negative breast cancer cells. Int J Mol Sci. 2021;22(4):2056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hannani D, Ma Y, Yamazaki T, Déchanet-Merville J, Kroemer G, Zitvogel L. Harnessing γδ T cells in anticancer immunotherapy. Trends Immunol. 2012;33(5):199–206.

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Li M, Ren K, Xia C, Li J, Yu Q, Qiu Y, Lu Z, Long Y, Zhang Z, He Q. On-demand autophagy cascade amplification nanoparticles precisely enhanced oxaliplatin-induced cancer immunotherapy. Adv Mater. 2020;32(32):2002160.

    Article  CAS  Google Scholar 

  8. Bruno PM, Liu Y, Park GY, Murai J, Koch CE, Eisen TJ, Pritchard JR, Pommier Y, Lippard SJ, Hemann MT. A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med. 2017;23(4):461–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang Z. Drug resistance and novel therapies in cancers in 2019. Cancers. 2021. https://doi.org/10.3390/cancers13040924.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 2020;21(9):3233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim YE, Kim E-K, Song M-J, Kim T-Y, Jang HH, Kang D. SILAC-based quantitative proteomic analysis of oxaliplatin-resistant pancreatic cancer cells. Cancers. 2021;13(4):724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Lu J-H, Wang F, Wang Y-N, He M-M, Wu Q-N, Lu Y-X, Yu H-E, Chen Z-H, Zhao Q, Liu J, Chen Y-X, Wang D-S, Sheng H, Liu Z-X, Zeng Z-L, Xu R-H, Ju H-Q. Inhibition of fatty acid catabolism augments the efficacy of oxaliplatin-based chemotherapy in gastrointestinal cancers. Cancer Lett. 2020;473:74–89.

    Article  CAS  PubMed  Google Scholar 

  13. Han J, Sun W, Liu R, Zhou Z, Zhang H, Chen X, Ba Y. Plasma exosomal miRNA expression profile as oxaliplatin-based chemoresistant biomarkers in colorectal adenocarcinoma. Front Oncol. 2020. https://doi.org/10.3389/fonc.2020.01495.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huang H, Aladelokun O, Ideta T, Giardina C, Ellis LM, Rosenberg DW. Inhibition of PGE2/EP4 receptor signaling enhances oxaliplatin efficacy in resistant colon cancer cells through modulation of oxidative stress. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-40848-4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pereira DM, Gomes SE, Borralho PM, Rodrigues CMP. MEK5/ERK5 activation regulates colon cancer stem-like cell properties. Cell Death Discovery. 2019. https://doi.org/10.1038/s41420-019-0150-1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Combes E, Andrade AF, Tosi D, Michaud HA, Coquel F, Garambois V, Desigaud D, Jarlier M, Coquelle A, Pasero P, Bonnefoy N, Moreaux J, Martineau P, Rio MD, Beijersbergen RL, Vezzio-Vie N, Gongora C. Inhibition of ataxia-telangiectasia mutated and RAD3-related (ATR) overcomes oxaliplatin resistance and promotes antitumor immunity in colorectal cancer. Can Res. 2019;79(11):2933–46.

    Article  CAS  Google Scholar 

  17. Li L, Jian S, Yupeng Z, Liu S, Yanan P, Zhou Z, Pan H, Xiaobing W, Chen L, Zhao Q. MEG3 is a prognostic factor for CRC and promotes chemosensitivity by enhancing oxaliplatin-induced cell apoptosis. Oncol Rep. 2017;38(3):1383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin L, Li X, Pan C, Lin W, Shao R, Liu Y, Zhang J, Luo Y, Qian K, Shi M, Bin J, Liao Y, Liao W. ATXN2L upregulated by epidermal growth factor promotes gastric cancer cell invasiveness and oxaliplatin resistance. Cell Death Dis. 2019;10(3):1–13.

    Article  Google Scholar 

  19. Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W, Hu J, Lu C, Liu Y. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 2020;11(9):1–12.

    Article  CAS  Google Scholar 

  20. Nakayama H, Ikebe T, Beppu M, Shirasuna K. High expression levels of nuclear factor κB IκB kinase α and Akt kinase in squamous cell carcinoma of the oral cavity. Cancer. 2001;92(12):3037–44.

    Article  CAS  PubMed  Google Scholar 

  21. Chen SJ, Kuo CC, Pan HY, Tsou TC, Yeh SC, Chang JY. Desferal regulates hCtr1 and transferrin receptor expression through Sp1 and exhibits synergistic cytotoxicity with platinum drugs in oxaliplatin-resistant human cervical cancer cells in vitro and in vivo. Oncotarget. 2016;7(31):49310–21.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen Y, Deng G, Fu Y, Han Y, Guo C, Yin L, Cai C, Shen H, Wu S, Zeng S. <p>FOXC2 Promotes Oxaliplatin Resistance by Inducing Epithelial-Mesenchymal Transition via MAPK/ERK Signaling in Colorectal Cancer</p>. Onco Targets Ther. 2020;13:1625–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roh JL, Kim EH, Jang HJ, Park JY, Shin D. Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer. Lett. 2016;381(1):96–103.

    CAS  Google Scholar 

  24. Luo E-F, Li H-X, Qin Y-H, Qiao Y, Yan G-L, Yao Y-Y, Li L-Q, Hou J-T, Tang C-C, Wang D. Role of ferroptosis in the process of diabetes-induced endothelial dysfunction. World J Diabetes. 2021;12(2):124.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19(7):405–14.

    Article  CAS  PubMed  Google Scholar 

  26. Yang WS, Sriramaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1–2):317–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lei P, Bai T, Sun Y. Mechanisms of ferroptosis and relations with regulated cell death: a review. Front Physiol. 2019;10:139.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gheytanchi E, Naseri M, Karimi-Busheri F, Atyabi F, Mirsharif ES, Bozorgmehr M, Ghods R, Madjd Z. Morphological and molecular characteristics of spheroid formation in HT-29 and Caco-2 colorectal cancer cell lines. Cancer Cell Int. 2021. https://doi.org/10.1186/s12935-021-01898-9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Trajkovic V, Mukherjee S, Dash S, Lohitesh K, Chowdhury R. The dynamic role of autophagy and MAPK signaling in determining cell fate under cisplatin stress in osteosarcoma cells. PLoS ONE. 2017;12(6):e0179203.

    Article  Google Scholar 

  30. Dabkeviciene D, Jonusiene V, Zitkute V, Zalyte E, Grigaitis P, Kirveliene V, Sasnauskiene A. The role of interleukin-8 (CXCL8) and CXCR2 in acquired chemoresistance of human colorectal carcinoma cells HCT116. Med Oncol. 2015;32(12):258.

    Article  PubMed  Google Scholar 

  31. Kukcinaviciute E, Jonusiene V, Sasnauskiene A, Dabkeviciene D, Eidenaite E, Laurinavicius A. Significance of Notch and Wnt signaling for chemoresistance of colorectal cancer cells HCT116. J Cell Biochem. 2018;119(7):5913–20.

    Article  CAS  PubMed  Google Scholar 

  32. Steckiewicz KP, Barcinska E, Malankowska A, Zauszkiewicz-Pawlak A, Nowaczyk G, Zaleska-Medynska A, Inkielewicz-Stepniak I. Impact of gold nanoparticles shape on their cytotoxicity against human osteoblast and osteosarcoma in in vitro model. Evaluation of the safety of use and anti-cancer potential. J Mater Sci Mater Med. 2019;30(2):22.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rahbar Saadat Y, Yari Khosroushahi A, Movassaghpour AA, Talebi M, PourghassemGargari B. Modulatory role of exopolysaccharides of Kluyveromyces marxianus and Pichia kudriavzevii as probiotic yeasts from dairy products in human colon cancer cells. J Func Foods. 2020;64:103675.

    Article  CAS  Google Scholar 

  34. VakiliSaatloo M, Aghbali AA, Koohsoltani M, Yari Khosroushahi A. Akt1 and Jak1 siRNA based silencing effects on the proliferation and apoptosis in head and neck squamous cell carcinoma. Gene. 2019;714:143997.

    Article  CAS  Google Scholar 

  35. Avelar-Freitas BA, Almeida VG, Pinto MCX, Mourão FAG, Massensini AR, Martins-Filho OA, Rocha-Vieira E, Brito-Melo GEA. Trypan blue exclusion assay by flow cytometry. Braz J Med Biol Res. 2014;47(4):307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Przeglad gastroenterologiczny. 2019;14(2):89.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kawai S, Takeshima N, Hayasaka Y, Notsu A, Yamazaki M, Kawabata T, Yamazaki K, Mori K, Yasui H. Comparison of irinotecan and oxaliplatin as the first-line therapies for metastatic colorectal cancer: a meta-analysis. BMC Cancer. 2021;21(1):1–11.

    Article  Google Scholar 

  38. Wang Y, Zhang D, Li Y, Fang F. MiR-138 Suppresses the PDK1 expression to decrease the oxaliplatin resistance of colorectal cancer. Onco Targets Ther. 2020;13:3607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song R, Tian K, Wang W, Wang L. P53 suppresses cell proliferation, metastasis, and angiogenesis of osteosarcoma through inhibition of the PI3K/AKT/mTOR pathway. Int J Surg. 2015;20:80–7.

    Article  PubMed  Google Scholar 

  40. Somanath PR, Razorenova OV, Chen J, Byzova TV. Akt1 in endothelial cell and angiogenesis. Cell Cycle. 2006;5(5):512–8.

    Article  CAS  PubMed  Google Scholar 

  41. Koseoglu S, Lu Z, Kumar C, Kirschmeier P, Zou J. AKT1, AKT2 and AKT3-dependent cell survival is cell line-specific and knockdown of all three isoforms selectively induces apoptosis in 20 human tumor cell lines. Cancer Biol Ther. 2007;6(5):755–62.

    Article  CAS  PubMed  Google Scholar 

  42. Garofalo M, Quintavalle C, Zanca C, De Rienzo A, Romano G, Acunzo M, Puca L, Incoronato M, Croce CM, Condorelli G. Akt regulates drug-induced cell death through Bcl-w downregulation. PLoS ONE. 2008;3(12):e4070.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Han Z, Hong L, Wu K, Han S, Shen H, Liu C, Han Y, Liu Z, Han Y, Fan D. Reversal of multidrug resistance of gastric cancer cells by downregulation of Akt1 with Akt1 siRNA. J Exp Clin Cancer Res. 2006;25(4):601.

    CAS  PubMed  Google Scholar 

  44. Dai Y, Jin S, Li X, Wang D. The involvement of Bcl-2 family proteins in AKT-regulated cell survival in cisplatin resistant epithelial ovarian cancer. Oncotarget. 2017;8(1):1354.

    Article  PubMed  Google Scholar 

  45. Letai A. Cell death and cancer therapy: don’t forget to kill the cancer cell. Clin Cancer Res. 2015. https://doi.org/10.1158/1078-0432.CCR-15-1204.

    Article  PubMed  Google Scholar 

  46. Zou Z, Chang H, Li H, Wang S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis. 2017;22(11):1321–35.

    Article  CAS  PubMed  Google Scholar 

  47. L. Nonnenmacher, S. Hasslacher, J. Zimmermann, G. Karpel-Massler, K. La Ferla-Brühl, S.E. Barry, T. Burster, M.D. Siegelin, O. Brühl, M.E. Halatsch, K.M. Debatin, M.A. Westhoff, Cell Death Induction in Cancer Therapy− Past, Present, and Future, Critical Reviews™ in Oncogenesis 21(3–4) (2016).

  48. Yu H, Yang C, Jian L, Guo S, Chen R, Li K, Qu F, Tao K, Fu Y, Luo F, Liu S. Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol Rep. 2019;42(2):826–38.

    PubMed  Google Scholar 

  49. Conrad M, Friedmann Angeli JP. Glutathione peroxidase 4 (Gpx4) and ferroptosis: what’s so special about it? Mol Cell Oncol. 2015;2(3):e995047.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Eaton JK, Furst L, Ruberto RA, Moosmayer D, Hilpmann A, Ryan MJ, Zimmermann K, Cai LL, Niehues M, Badock V, Kramm A, Chen S, Hillig RC, Clemons PA, Gradl S, Montagnon C, Lazarski KE, Christian S, Bajrami B, Neuhaus R, Eheim AL, Viswanathan VS, Schreiber SL. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat Chem Biol. 2020;16(5):497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Forcina GC, Dixon SJ. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 2019;19(18):1800311.

    Article  Google Scholar 

  52. Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, Brown LM, Valenzuela CA, Wolpaw AJ, Stockwell BR. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 2016;12(7):497–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project is part of a Ph.D. thesis (grant No. 59305) and Pharm.D. thesis (grant No.64435), funded by Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.

Author information

Authors and Affiliations

Authors

Contributions

MG performed experiments, analyzed data, and wrote the paper. HRH supervised the research, analyzed the data, and prepared the manuscript; AAA performed experiments and analyzed the data. YF provided a resistance cell line and prepared a manuscript. MT served flow cytometry and analyzed its data. AYK designed the investigation and then led and supervised the project.

Corresponding authors

Correspondence to Hamid Reza Heidari or Ahmad Yari Khosroushahi.

Ethics declarations

Conflict of interest

We declare that we have no significant competing financial, professional, or personal interests that might have influenced the performance or presentation of the work described in this manuscript.

Ethical approval

There is no involvement of humans or animals in this study.

Consent for publication

All other authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golbashirzadeh, M., Heidari, H.R., Aghamolayi, A.A. et al. In vitro siRNA-mediated GPX4 and AKT1 silencing in oxaliplatin resistance cancer cells induces ferroptosis and apoptosis. Med Oncol 40, 279 (2023). https://doi.org/10.1007/s12032-023-02130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02130-6

Keywords

Navigation