Skip to main content

Advertisement

Log in

The evolving landscape of involvement of DTYMK enzymes in cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cancer cells require continuous synthesis of nucleotides for their uncontrolled proliferation. Deoxy thymidylate kinase (DTYMK) belongs to the thymidylate kinase family and is concerned with pyrimidine metabolism. DTYMK catalyzes the ATP-based conversion of deoxy-TMP to deoxy-TDP in both de novo and salvage pathways. Different studies demonstrated that DTYMK was increased in various types of cancers such as hepatocellular carcinoma, colon cancer, lung cancer, etc. Increased level of DTYMK was associated with poorer survival and prognosis, stage, grade and size of tumor, cell proliferation, colony formation, enhanced sensitivity to chemotherapy drugs, migration. Some studies were showed that knockdown of DTYMK reduced the signaling pathway of PI3K/AKT and downregulated expression of CART, MAPKAPK2, AKT1 and NRF1. Moreover, some microRNAs could suppress DTYMK expressions. On the other hand based on the TIMER database, the infiltration of macrophages, dendritic cells, neutrophils, B cells, CD4+ T cell and CD8+ T cell is affected by DTYMK. In the present review, we describe the genomic location, protein structure and isoforms of DTYMK and focus on its role in cancer development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wang T, Hughes NW, Krupczak KM, Post Y, Wei JJ, Lander ES, Sabatini DM. Identification and characterization of essential genes in the human genome. Science (NY). 2015;350(6264):1096–101.

    Article  CAS  Google Scholar 

  2. Chen WH, Chen X, Zhao XM, Bork P. OGEE v2: an update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines. Nucleic Acids Res. 2017;45:940–4.

    Article  Google Scholar 

  3. Lama W-LYC, Linga T, Wonga K, Lawa C. Deoxythymidylate kinase, DTYMK, is a novel gene for mitochondrial DNA depletion syndrome. Clin Chim Acta. 2019;496:93–9.

    Article  Google Scholar 

  4. Sun F, et al. Inhibition of DTYMK significantly restrains the growth of HCC and increases sensitivity to oxaliplatin. Cell Death Dis. 2021;12(12):1093.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vanoevelen JMB, Grashorn J, Lambrichs E, Kamsteeg E-J, Bok L, Wevers R, Van der Knaap M, Bugiani M, Frisk JMH, et al. DTYMK is essential for genome integrity and neuronal survival. Acta Neuropathol. 2022;143:245–62.

    Article  PubMed  Google Scholar 

  6. Liu YM, Cowley G, Carretero J, Liu Q, Nieland T, Xu C, Cohoon T, Gao P, Zhang Y, et al. Metabolic and functional genomic studies identify deoxythymidylate kinase as a target in LKB1-mutant lung cancer. Cancer Discov. 2013;3:870–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu C-M, Chang Z-F. Synthetic lethality by lentiviral short hairpin RNA silencing of thymidylate kinase and doxorubicin in colon cancer cells regardless of the p53 status. Can Res. 2008;68(8):2831–40.

    Article  CAS  Google Scholar 

  8. Chaudhary SK, Jeyakanthan J, Sekar K. Structural and functional roles of dynamically correlated residues in thymidylate kinase. Acta Crystallogr D. 2018;74(Pt 4):341–54. https://doi.org/10.1107/s2059798318002267.

    Article  CAS  Google Scholar 

  9. Su J-Y, Sclafani RA. Molecular cloning and expression of the human deoxythymidylate kinase gene in yeast. Nucleic Acids Res. 1991;19(4):823–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liang P, et al. Molecular characterization of the murine thymidylate kinase gene. Cell Growth Differ. 1995;6(10):1333–8.

    CAS  PubMed  Google Scholar 

  11. Ke Y-YKP-Y, Hu C-M, Chang Z-F. Control of dTTP pool size by anaphase promoting complex/cyclosome is essential for the maintenance of genetic stability. Genes Dev. 2005;19(16):1920–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Evans DR, Guy HI. Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem. 2004;279(32):33035–8.

    Article  CAS  PubMed  Google Scholar 

  13. Löffler M, et al. Pyrimidine pathways in health and disease. Trends Mol Med. 2005;11(9):430–7.

    Article  PubMed  Google Scholar 

  14. Evans DR. Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem. 2004;279(32):33035–8.

    Article  CAS  PubMed  Google Scholar 

  15. Simmer JP, et al. Mammalian aspartate transcarbamylase (ATCase): sequence of the ATCase domain and interdomain linker in the CAD multifunctional polypeptide and properties of the isolated domain. Proc Natl Acad Sci USA. 1989;86(12):4382–6. https://doi.org/10.1073/pnas.86.12.4382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deans RM, et al. Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification. Nat Chem Biol. 2016;12(5):361–6. https://doi.org/10.1038/nchembio.2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wittmann JG, et al. Structures of the human orotidine-5’-monophosphate decarboxylase support a covalent mechanism and provide a framework for drug design. Structure. 2008;16(1):82–92. https://doi.org/10.1016/j.str.2007.10.020.

    Article  CAS  PubMed  Google Scholar 

  18. Liou JY, et al. Characterization of human UMP/CMP kinase and its phosphorylation of D- and L-form deoxycytidine analogue monophosphates. Cancer Res. 2002;62(6):1624–31.

    CAS  PubMed  Google Scholar 

  19. Greene BL, Nocera DG, Stubbe J. Basis of dATP inhibition of RNRs. J Biol Chem. 2018;293(26):10413–4. https://doi.org/10.1074/jbc.H118.003717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen D, et al. Structural analyses of human thymidylate synthase reveal a site that may control conformational switching between active and inactive states. J Biol Chem. 2017;292(32):13449–58. https://doi.org/10.1074/jbc.M117.787267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cao DLJ, Kim B, Pizzorno G. Abnormalities in uridine homeostatic regulation and pyrimidine nucleotide metabolism as a consequence of the deletion of the uridine phosphorylase gene. J Biol Chem. 2005;280(22):21169–75.

    Article  CAS  PubMed  Google Scholar 

  22. Ostermann NS, Brundiers R, Konrad M, Reinstein J, Veit T, Goody RS, Lavie A. Insights into the phosphoryltransfer mechanism of human thymidylate kinase gained from crystal structures of enzyme complexes along the reaction coordinate. Structure. 2000;8:629–42.

    Article  CAS  PubMed  Google Scholar 

  23. Hu Frisk J, et al. Structural and functional analysis of human thymidylate kinase isoforms. Nucleosides Nucleotides Nucleic Acids. 2022;41(3):321–32. https://doi.org/10.1080/15257770.2021.2023748.

    Article  CAS  PubMed  Google Scholar 

  24. Yeh H-W, et al. Pyrimidine metabolic rate limiting enzymes in poorly-differentiated hepatocellular carcinoma are signature genes of cancer stemness and associated with poor prognosis. Oncotarget. 2017;8(44):77734.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guo Y et al (2021) DTYMK expression predicts prognosis and chemotherapeutic response and correlates with immune infiltration in hepatocellular carcinoma. J Hepatocell Carcinoma 871–885.

  26. Zhou T, et al. DTYMK promote hepatocellular carcinoma proliferation by regulating cell cycle. Cell Cycle. 2021;20(17):1681–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heydari N, et al. Overexpression of serum MicroRNA-140-3p in premenopausal women with newly diagnosed breast cancer. Gene. 2018;655:25–9.

    Article  CAS  PubMed  Google Scholar 

  28. Nashtahosseini Z, et al. Circulating status of microRNAs 660–5p and 210–3p in breast cancer patients. J Gene Med. 2021;23(4): e3320.

    Article  CAS  PubMed  Google Scholar 

  29. He G, et al. Mir-148b-3p regulates the expression of DTYMK to drive hepatocellular carcinoma cell proliferation and metastasis. Front Oncol. 2021;11:5448.

    Article  Google Scholar 

  30. Chen X, et al. Comprehensive analysis of DTYMK for estimating the immune microenvironment, diagnosis, prognosis effect in patients with lung adenocarcinoma. Aging (Albany NY). 2022;14(19):7866.

    Article  PubMed  Google Scholar 

  31. Wang W, et al (2016) Elevated expression of DTYMK is associated with poor prognosis in patients with non-small cell lung cancer. Int J Clin Exp Med 9(11).

  32. Zhang Y et al (2022) Comprehensive analysis of DTYMK in pan-cancer and verification in lung adenocarcinoma. Biosci Rep 42(10):BSR20221170.

  33. Lan T, et al. Deoxythymidylate kinase as a promising marker for predicting prognosis and immune cell infiltration of pan-cancer. Front Mol Biosci. 2022. https://doi.org/10.3389/fmolb.2022.887059.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhou L et al (2022) Relationship between up-regulation of DTYMK expression and immune infiltration for the prognosis of lung adenocarcinoma. Res Square. https://doi.org/10.21203/rs.3.rs-1693054/v1.

  35. Wang H, et al. High expression levels of pyrimidine metabolic rate–limiting enzymes are adverse prognostic factors in lung adenocarcinoma: a study based on the cancer genome atlas and gene expression omnibus datasets. Purinergic Signal. 2020;16:347–66.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu Y, et al. Metabolic and functional genomic studies identify deoxythymidylate kinase as a target in LKB1-mutant lung canceridentifying Lkb1-mutant synthetic lethal targets. Cancer Discov. 2013;3(8):870–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cicatiello L, et al. A genomic view of estrogen actions in human breast cancer cells by expression profiling of the hormone-responsive transcriptome. J Mol Endocrinol. 2004;32(3):719–75.

    Article  CAS  PubMed  Google Scholar 

  38. Chow L, et al (2012) 23P expression of beta-iii tubulin, Foxo 3 protein and deoxythymidine kinase in breast cancer patients receiving neoadjuvant chemotherapy. Ann Oncol 23:ii21.

  39. Mir SM, et al. Melatonin: a smart molecule in the DNA repair system. Cell Biochem Funct. 2022;40(1):4–16.

    Article  CAS  PubMed  Google Scholar 

  40. Hu C-M, et al. Tumor cells require thymidylate kinase to prevent dUTP incorporation during DNA repair. Cancer Cell. 2012;22(1):36–50.

    Article  CAS  PubMed  Google Scholar 

  41. Hu C-M, et al. Thymidylate kinase is critical for DNA repair via ATM-dependent Tip60 complex formation. FASEB J. 2019;33(2):2017–25.

    Article  CAS  PubMed  Google Scholar 

  42. De Angelis PM, et al. Molecular characterizations of derivatives of HCT116 colorectal cancer cells that are resistant to the chemotherapeutic agent 5-fluorouracil. Int J Oncol. 2004;24(5):1279–88.

    PubMed  Google Scholar 

  43. Zeinali P, et al. High dose of 3, 7-dimethyl-1-propargylxanthine induces cell death in YM-1 and KYSE30 cancer cell lines. Med Lab J. 2022;16(5):37–42.

    Article  Google Scholar 

  44. Hamzeloo-Moghadam M, et al. Britannin, a sesquiterpene lactone, inhibits proliferation and induces apoptosis through the mitochondrial signaling pathway in human breast cancer cells. Tumor Biol. 2015;36:1191–8.

    Article  CAS  Google Scholar 

  45. Yuka Y, et al. Correlation of ENT1, TK1, dNT, TMPK, and PCNA with 18F-FLT uptake in gastric cancer. J Nucl Med. 2009;50(Supplement 2):1764.

    Google Scholar 

  46. Zhao H, et al. Pan-cancer analysis of prognostic and immunological role of DTYMK in human tumors. Front Genet. 2022. https://doi.org/10.3389/fgene.2022.989460.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhou L et al (2022) Relationship between up-regulation of DTYMK expression and immune infiltration for the prognosis of lung adenocarcinoma. https://doi.org/10.21203/rs.3.rs-1693054/v1

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Mehdi Jafari.

Ethics declarations

Conflict of interest

The authors have no conflicts of interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, N., Mahdizadeh, M. & Jafari, S.M. The evolving landscape of involvement of DTYMK enzymes in cancer. Med Oncol 40, 213 (2023). https://doi.org/10.1007/s12032-023-02086-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02086-7

Keywords

Navigation