Skip to main content

Advertisement

Log in

Arginine deiminase produced by lactic acid bacteria as a potent anti-cancer drug

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Bacterial-based cancer immunotherapy has recently gained widespread attention due to its exceptional mechanism of rich pathogen-associated molecular patterns in anti-cancer immune responses. Contrary to conventional cancer therapies such as surgery, chemotherapy, radiation and phototherapy, bacteria-based cancer immunotherapy has the unique ability to suppress cancer by selectively accumulating and growing in tumours. In the view of this, several bacterial strains are being used for the treatment of cancer. Of which, lactic acid bacteria are a powerful, albeit still inadequately understood bacteria that possess a wide source of bioactive chemicals. Lactic acid bacteria metabolites, such as bacteriocins, short-chain fatty acids, exopolysaccharides show antitumour property. Amino acid pathways, which have lately been focussed as a new strategy to cancer therapy, are key element of the adaptability and dysregulation of metabolic pathways identified in proliferation of tumour cells. Arginine metabolism, in particular, has been shown to be critical for cancer therapy. As a result, better understanding of arginine metabolism in LAB and cancer cells could lead to new cancer therapeutic targets. This review will outline current advances in the interaction of arginine metabolism with cancer therapy and propose an arginine deiminase expression system to combat cancer more effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rycaj K, Tang DG. Cell-of-origin of cancer versus cancer stem cells: Assays and interpretations. Cancer Res. 2015;75:4003–11. https://doi.org/10.1158/0008-5472.CAN-15-0798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  3. Löbrich M, Kiefer J. Assessing the likelihood of severe side effects in radiotherapy. Int J Cancer. 2006;118:2652–6. https://doi.org/10.1002/ijc.21782.

    Article  CAS  PubMed  Google Scholar 

  4. Du W, Wang W-P, Cao Y. Mechanism and research progress of classical prescriptions and non-classical prescriptions in prevention and treatment of side effects of radiotherapy and chemotherapy. Zhongguo Zhong Yao Za Zhi. 2022;47:6297–307. https://doi.org/10.19540/j.cnki.cjcmm.20220725.501.

    Article  PubMed  Google Scholar 

  5. Dennert G, Horneber M. Selenium for alleviating the side effects of chemotherapy, radiotherapy and surgery in cancer patients. Cochrane Database Syst Rev. 2006. https://doi.org/10.1002/14651858.CD005037.pub2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wei MQ. Facultative or obligate anaerobic bacteria have the potential for multimodality therapy of solid tumours Eur. Eur J Cancer. 2007. https://doi.org/10.1016/j.ejca.2006.10.005.

    Article  PubMed  Google Scholar 

  7. Li Q. Butyrate suppresses motility of colorectal cancer cells via deactivating Akt/ERK signaling in histonedeacetylase dependent manner. J J Pharmacol Sci. 2017. https://doi.org/10.1016/j.jphs.2017.11.004.

    Article  PubMed  Google Scholar 

  8. Norouzi Z, Salimi A, Halabian R, Fahimi H. Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines. MicrobPathog. 2018;123:183–9. https://doi.org/10.1016/j.micpath.2018.07.006.

    Article  CAS  Google Scholar 

  9. Meng Z, Chun L, Huizhen L, Na L, Wenshu J, Chenfeng W. Progress in adhesion of lactic acid bacteria to intestinal epithelial cells. J Chin Inst Food Sci Technol. 2020;20:341–50. https://doi.org/10.16429/j.1009-7848.2020.11.038.

    Article  CAS  Google Scholar 

  10. Mathur H, Beresford TP, Cotter PD. Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients. 2020;12:1679. https://doi.org/10.3390/nu12061679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang G, Si Q, Yang S, Jiao T, Zhu H, Tian P, et al. Lactic acid bacteria reduce diabetes symptoms in mice by alleviating gut microbiota dysbiosis and inflammation in different manners. Food Funct. 2020;11:5898–914. https://doi.org/10.1039/c9fo02761k.

    Article  CAS  PubMed  Google Scholar 

  12. Nowak A, Paliwoda A, Błasiak J. Anti-proliferative, pro-apoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: A review of mechanisms and therapeutic perspectives. Crit Rev Food Sci Nutr. 2019;59:3456–67. https://doi.org/10.1080/10408398.2018.1494539.

    Article  CAS  PubMed  Google Scholar 

  13. Yamane T, Sakamoto T, Nakagaki T, Nakano Y. Lactic acid bacteria from Kefir increase cytotoxicity of natural killer cells to tumor cells. 2018. Foods. https://doi.org/10.3390/foods7040048.

  14. Caldara M, Dupont G, Leroy F, Goldbeter A, De Vuyst L, Cunin R. Arginine biosynthesis in Escherichia coli: experimental perturbation and mathematical modeling. J Biol Chem. 2008;283:6347–58. https://doi.org/10.1074/jbc.M705884200.

    Article  CAS  PubMed  Google Scholar 

  15. Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, Bomalaski JS. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers - a method for identifying cancers sensitive to arginine deprivation. Cancer. 2004;100:826–33.

    Article  CAS  PubMed  Google Scholar 

  16. Szlosarek PW, Grimshaw MJ, Wilbanks GD, Hagemann T, Wilson JL, Burke F, et al. Aberrant regulation of argininosuccinate synthetase by TNF-alpha in human epithelial ovarian cancer. Int J Cancer. 2007;121:6–11. https://doi.org/10.1002/ijc.22666.

    Article  CAS  PubMed  Google Scholar 

  17. Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, Crook T, et al. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer. 2010;126:2762–72. https://doi.org/10.1002/ijc.25202.

    Article  CAS  PubMed  Google Scholar 

  18. Kramer MG, Masner M, Ferreira FA, Hoffman RM. Bacterial therapy of cancer: Promises, limitations, and insights for future directions. Front Microbiol. 2018;9:16. https://doi.org/10.3389/fmicb.2018.00016.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Łukasiewicz K, Fol M. Microorganisms in the treatment of cancer: Advantages and limitations. J Immunol Res. 2018;2018:1–8. https://doi.org/10.1155/2018/2397808.

    Article  CAS  Google Scholar 

  20. Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang X-Y. Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res. 2013;119:421–75. https://doi.org/10.1016/B978-0-12-407190-2.00007-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006;26:154–8.

    PubMed  PubMed Central  Google Scholar 

  22. Karpiński T, Adamczak A. Anticancer activity of bacterial proteins and peptides. Pharmaceutics. 2018;10:54. https://doi.org/10.3390/pharmaceutics10020054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoshimura K, Jain A, Allen HE, Laird LS, Chia CY, Ravi S, et al. Selective targeting of antitumor immune responses with engineered live-attenuated Listeria monocytogenes. Cancer Res. 2006;66:1096–104. https://doi.org/10.1158/0008-5472.CAN-05-2307.

    Article  CAS  PubMed  Google Scholar 

  24. Yazawa K, Fujimori M, Nakamura T, Sasaki T, Amano J, Kano Y, et al. Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors. Breast Cancer Res Treat. 2001;66:165–70. https://doi.org/10.1023/a:1010644217648.

    Article  CAS  PubMed  Google Scholar 

  25. Min J-J, Kim H-J, Park JH, Moon S, Jeong JH, Hong Y-J, et al. Noninvasive real-time imaging of tumors and metastases using tumor-targeting light-emitting Escherichia coli. Mol Imaging Biol. 2008;10:54–61. https://doi.org/10.1007/s11307-007-0120-5.

    Article  PubMed  Google Scholar 

  26. Khan SA, Everest P, Servos S, Foxwell N, Zähringer U, Brade H, et al. A lethal role for lipid A in Salmonella infections. Mol Microbiol. 1998;29:571–9. https://doi.org/10.1046/j.1365-2958.1998.00952.x.

    Article  CAS  PubMed  Google Scholar 

  27. Pawelek JM, Low KB, Bermudes D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 1997;57:4537–44.

    CAS  PubMed  Google Scholar 

  28. King I, Bermudes D, Lin S, Belcourt M, Pike J, Troy K, et al. Tumor-targeted Salmonella expressing cytosine deiminase as an anticancer agent. Hum Gene Ther. 2002;13:1225–33.

    Article  CAS  PubMed  Google Scholar 

  29. Mei S, Theys J, Landuyt W, Anne J, Lambin P. Optimization of tumor-targeted gene delivery by engineered attenuated Salmonella typhimurium. Anticancer Res. 2002;22:3261–6.

    CAS  PubMed  Google Scholar 

  30. Royo JL, Becker PD, Camacho EM, Cebolla A, Link C, Santero E, et al. In vivo gene regulation in Salmonella spp. by a salicylate-dependent control circuit. Nat Methods. 2007;4:937–42. https://doi.org/10.1038/nmeth1107.

    Article  CAS  PubMed  Google Scholar 

  31. Parker RC, Plummer HC. Effect of histolyticus infection and toxin on transplantable mouse tumors. Proc Soc Exp Biol Med. 1947;66:461–7. https://doi.org/10.3181/00379727-66-16124.

    Article  CAS  PubMed  Google Scholar 

  32. Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci U S A. 2001;98:15155–60. https://doi.org/10.1073/pnas.251543698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheong I, Huang X, Bettegowda C, Diaz LA Jr, Kinzler KW, Zhou S, et al. A bacterial protein enhances the release and efficacy of liposomal cancer drugs. Science. 2006;314:1308–11. https://doi.org/10.1126/science.1130651.

    Article  CAS  PubMed  Google Scholar 

  34. Longhi G, van Sinderen D, Ventura M, Turroni F. Microbiota and cancer: The emerging beneficial role of bifidobacteria in cancer immunotherapy. Front Microbiol. 2020. https://doi.org/10.3389/fmicb.2020.575072.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–8. https://doi.org/10.1101/gr.126573.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis. 2015;60:208–15. https://doi.org/10.1093/cid/ciu787.

    Article  CAS  PubMed  Google Scholar 

  37. Reid G, Burton J. Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes Infect. 2002;4:319–24. https://doi.org/10.1016/s1286-4579(02)01544-7.

    Article  PubMed  Google Scholar 

  38. Liu C, Zheng J, Ou X, Han Y. Anti-cancer substances and safety of lactic acid bacteria in clinical treatment. Front Microbiol. 2021;12:722052. https://doi.org/10.3389/fmicb.2021.722052.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jacouton E, Michel M-L, Torres-Maravilla E, Chain F, Langella P, Bermúdez-Humarán LG. Elucidating the immune-related mechanisms by which probiotic strain Lactobacillus casei BL23 displays anti-tumoral properties. Front Microbiol. 2018;9:3281. https://doi.org/10.3389/fmicb.2018.03281.

    Article  PubMed  Google Scholar 

  40. Chen Z-Y, Hsieh Y-M, Huang C-C, Tsai C-C. Inhibitory effects of probiotic Lactobacillus on the growth of human colonic carcinoma cell line HT-29. Molecules. 2017;22:107. https://doi.org/10.3390/molecules22010107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iyer C, Kosters A, Sethi G, Kunnumakkara AB, Aggarwal BB, Versalovic J. Probiotic Lactobacillus reuteri promotes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-kappaB and MAPK signalling. Cell Microbiol. 2008;10:1442–52. https://doi.org/10.1111/j.1462-5822.2008.01137.x.

    Article  CAS  PubMed  Google Scholar 

  42. Kim Y, Oh S, Yun HS, Oh S, Kim SH. Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells: Antitumour activity of cb-EPS via autophagy. Lett ApplMicrobiol. 2010;51:123–30. https://doi.org/10.1111/j.1472-765X.2010.02859.x.

    Article  CAS  Google Scholar 

  43. Baldwin C, Millette M, Oth D, Ruiz MT, Luquet F-M, Lacroix M. Probiotic Lactobacillus acidophilus and L. casei mix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis. Nutr Cancer. 2010;62:371–8. https://doi.org/10.1080/01635580903407197.

    Article  CAS  PubMed  Google Scholar 

  44. Joo NE, Ritchie K, Kamarajan P, Miao D, Kapila YL. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med. 2012;1:295–305. https://doi.org/10.1002/cam4.35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu H, Cao C, Wu Z, Zhang H, Sun Z, Wang M, et al. The probiotic L. casei Zhang slows the progression of acute and chronic kidney disease. Cell Metab. 2021;33:1926–42. https://doi.org/10.1016/j.cmet.2021.06.014.

    Article  CAS  PubMed  Google Scholar 

  46. Rodrigues G, Silva GGO, Buccini DF, Duque HM, Dias SC, Franco OL. Bacterial proteinaceous compounds with multiple activities toward cancers and microbial infection. Front Microbiol. 2019;10:1690. https://doi.org/10.3389/fmicb.2019.01690.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Paiva AD, de Oliveira MD, de Paula SO, Baracat-Pereira MC, Breukink E, Mantovani HC. Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology. 2012;158:2851–8. https://doi.org/10.1099/mic.0.062190-0.

    Article  CAS  PubMed  Google Scholar 

  48. El Ghany KA, Hamouda R, Elhafez EA, Mahrous H, Salem-Bekhit M, Hamza HA. A potential role of Lactobacillus acidophilus LA1 and its exopolysaccharides on cancer cells in male albino mice. Biotechnol Biotechnol Equip. 2015;29:977–83. https://doi.org/10.1080/13102818.2015.1050455.

    Article  CAS  Google Scholar 

  49. Zhou X, Hong T, Yu Q, Nie S, Gong D, Xiong T, et al. Exopolysaccharides from Lactobacillus plantarum NCU116 induce c-Jun dependent Fas/Fasl-mediated apoptosis via TLR2 in mouse intestinal epithelial cancer cells. Sci Rep. 2017;7:14247. https://doi.org/10.1038/s41598-017-14178-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Di W, Zhang L, Yi H, Han X, Zhang Y, Xin L. Exopolysaccharides produced by Lactobacillus strains suppress HT-29 cell growth via induction of G0/G1 cell cycle arrest and apoptosis. Oncol Lett. 2018. https://doi.org/10.3892/ol.2018.9129.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Deng C, Fu H, Xu J, Shang J, Cheng Y. Physiochemical and biological properties of phosphorylated polysaccharides from Dictyophoraindusiata. Int J BiolMacromol. 2015;72:894–9. https://doi.org/10.1016/j.ijbiomac.2014.09.053.

    Article  CAS  Google Scholar 

  52. Matsumoto S, Hara T, Nagaoka M, Mike A, Mitsuyama K, Sako T, et al. A component of polysaccharide peptidoglycan complex on Lactobacillus induced an improvement of murine model of inflammatory bowel disease and colitis-associated cancer. Immunology. 2009;128:e170–80. https://doi.org/10.1111/j.1365-2567.2008.02942.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim JY, Woo HJ, Kim Y-S, Lee HJ. Biotechnol Lett. 2002;24:1431–6. https://doi.org/10.1023/a:1019875204323.

    Article  CAS  Google Scholar 

  54. Kitazawa H, Watanabe H, Shimosato T, Kawai Y, Itoh T, Saito T. Immunostimulatory oligonucleotide, CpG-like motif exists in Lactobacillus delbrueckii ssp. bulgaricus NIAI B6. Int J Food Microbiol. 2003;85:11–21. https://doi.org/10.1016/s0168-1605(02)00477-4.

    Article  CAS  PubMed  Google Scholar 

  55. Paiva AD, Dias M, de Oliveira S, de Paula O, Baracat-Pereira MC, Breukink E, Mantovani HC. Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology. 2012;158:2851–8. https://doi.org/10.1099/mic.0.062190-0.

    Article  CAS  PubMed  Google Scholar 

  56. Maher S, McClean S. Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. BiochemPharmacol. 2006;71:1289–98. https://doi.org/10.1016/j.bcp.2006.01.012.

    Article  CAS  Google Scholar 

  57. Zhu C, Guo G, Ma Q, Zhang F, Ma F, Liu J, et al. Diversity in S-layers. Prog Biophys Mol Biol. 2017;123:1–15. https://doi.org/10.1016/j.pbiomolbio.2016.08.002.

    Article  CAS  PubMed  Google Scholar 

  58. Alp D, Kuleaşan H, KorkutAltıntaş A. The importance of the S-layer on the adhesion and aggregation ability of Lactic acid bacteria. Mol Biol Rep. 2020;47:3449–57. https://doi.org/10.1007/s11033-020-05430-6.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang T, Pan D, Yang Y, Jiang X, Zhang J, Zeng X, et al. Effect of Lactobacillus acidophilus CICC 6074 S-layer protein on colon cancer HT-29 cell proliferation and apoptosis. J Agric Food Chem. 2020;68:2639–47. https://doi.org/10.1021/acs.jafc.9b06909.

    Article  CAS  PubMed  Google Scholar 

  60. Shirai H, Blundell TL, Mizuguchi K. A novel superfamily of enzymes that catalyze the modification of guanidino groups. Trends Biochem Sci. 2001;26:465–8. https://doi.org/10.1016/s0968-0004(01)01906-5.

    Article  CAS  PubMed  Google Scholar 

  61. Amer MN, Mansour NM, El-Diwany AI, Dawoud IE, Rashad FM. Isolation of probiotic lactobacilli strains harboring l-asparaginase and arginine deiminase genes from human infant feces for their potential application in cancer prevention. Ann Microbiol. 2013;63:1121–9. https://doi.org/10.1007/s13213-012-0569-6.

    Article  CAS  Google Scholar 

  62. Wheatley DN, Campbell E. Arginine catabolism, liver extracts and cancer. Pathol Oncol Res. 2002;8:18–25. https://doi.org/10.1007/bf03033696.

    Article  CAS  PubMed  Google Scholar 

  63. Kuo MT, Savaraj N, Feun LG. Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes. Oncotarget. 2010;1:246–51. https://doi.org/10.18632/oncotarget.135.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Qiu F, Chen Y-R, Liu X, Chu C-Y, Shen L-J, Xu J, et al. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci Signal. 2014. https://doi.org/10.1126/scisignal.2004761.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Changou CA, Chen Y-R, Xing L, Yen Y, Chuang FYS, Cheng RH, et al. Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. Proc Natl Acad Sci U S A. 2014;111:14147–52. https://doi.org/10.1073/pnas.1404171111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, Bomalaski JS, et al. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation: a method for identifying cancers sensitive to arginine deprivation. Cancer. 2004;100:826–33. https://doi.org/10.1002/cncr.20057.

    Article  CAS  PubMed  Google Scholar 

  67. Bowles TL, Kim R, Galante J, Parsons CM, Virudachalam S, Kung H-J, et al. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. Int J Cancer. 2008;123:1950–5. https://doi.org/10.1002/ijc.23723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Scott L, Lamb J, Smith S, Wheatley DN. Single amino acid (arginine) deprivation: rapid and selective death of cultured transformed and malignant cells. Br J Cancer. 2000;83:800–10. https://doi.org/10.1054/bjoc.2000.1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Savaraj N, You M, Wu C, Wangpaichitr M, Kuo MT, Feun LG. Arginine deprivation, autophagy, apoptosis (AAA) for the treatment of melanoma. Curr Mol Med. 2010;10:405–12. https://doi.org/10.2174/156652410791316995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu J, Ma J, Wu Z, Li W, Zhang D, Han L, et al. Arginine deiminase augments the chemosensitivity of argininosuccinate synthetase-deficient pancreatic cancer cells to gemcitabine via inhibition of NF-B signaling. BMC Cancer. 2014. https://doi.org/10.1186/1471-2407-14-686.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Miraki-Moud F, Ghazaly E, Ariza-McNaughton L, Hodby KA, Clear A, Anjos-Afonso F, et al. Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo. Blood. 2015;125:4060–8. https://doi.org/10.1182/blood-2014-10-608133.

    Article  CAS  PubMed  Google Scholar 

  72. Feun L, You M, Wu CJ, Kuo MT, Wangpaichitr M, Spector S, et al. Arginine deprivation as a targeted therapy for cancer. Curr Pharm Des. 2008;14:1049–57. https://doi.org/10.2174/138161208784246199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang J, Brumell JH. Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol. 2014;12:101–14. https://doi.org/10.1038/nrmicro3160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vellai T, Tóth ML, Kovács AL. Janus-faced autophagy: a dual role of cellular self-eating in neurodegeneration? Autophagy. 2007;3:461–3. https://doi.org/10.4161/auto.4282.

    Article  CAS  PubMed  Google Scholar 

  75. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8:741–52. https://doi.org/10.1038/nrm2239.

    Article  CAS  PubMed  Google Scholar 

  76. Kim RH, Bold RJ, Kung H-J. ADI, autophagy and apoptosis: metabolic stress as a therapeutic option for prostate cancer. Autophagy. 2009;5:567–8. https://doi.org/10.4161/auto.5.4.8252.

    Article  CAS  PubMed  Google Scholar 

  77. Tokunaga C, Yoshino K-I, Yonezawa K. mTOR integrates amino acid- and energy-sensing pathways. BiochemBiophys Res Commun. 2004;313:443–6. https://doi.org/10.1016/j.bbrc.2003.07.019.

    Article  CAS  Google Scholar 

  78. Proud CG. mTOR-mediated regulation of translation factors by amino acids. BiochemBiophys Res Commun. 2004;313:429–36. https://doi.org/10.1016/j.bbrc.2003.07.015.

    Article  CAS  Google Scholar 

  79. Wang J, Whiteman MW, Lian H, Wang G, Singh A, Huang D, et al. A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J Biol Chem. 2009;284:21412–24. https://doi.org/10.1074/jbc.M109.026013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Savaraj N, Wu C, Kuo MT, You M, Wangpaichitr M, Robles C, et al. The relationship of arginine deprivation, argininosuccinate synthetase and cell death in melanoma. Drug Target Insights. 2007;2:119–28. https://doi.org/10.1177/117739280700200016.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Liu J, Ma J, Wu Z, Li W, Zhang D, Han L, Wang F, Reindl KM, Wu E, Ma Q. Arginine deiminase augments the chemosensitivity of argininosuccinate synthetase-deficient pancreatic cancer cells to gemcitabine via inhibition of NF-B signaling. BMC Cancer. 2014. https://doi.org/10.1186/1471-2407-14-686.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kim RH, Coates JM, Bowles TL, McNerney GP, Sutcliffe J, Jung JU, et al. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res. 2009;69:700–8. https://doi.org/10.1158/0008-5472.CAN-08-3157.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Szlosarek PW, Klabatsa A, Pallaska A, Sheaff M, Smith P, Crook T, et al. In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion. Clin Cancer Res. 2006;12:7126–31. https://doi.org/10.1158/1078-0432.CCR-06-1101.

    Article  CAS  PubMed  Google Scholar 

  84. Lam T-L, Wong GKY, Chow H-Y, Chong H-C, Chow T-L, Kwok S-Y, et al. Recombinant human arginase inhibits the in vitro and in vivo proliferation of human melanoma by inducing cell cycle arrest and apoptosis: Recombinant human arginase inhibits melanoma growth. Pigment Cell Melanoma Res. 2011;24:366–76. https://doi.org/10.1111/j.1755-148X.2010.00798.x.

    Article  CAS  PubMed  Google Scholar 

  85. Ni Y, Schwaneberg U, Sun Z-H. Arginine deiminase, a potential anti-tumor drug. Cancer Lett. 2008;261:1–11. https://doi.org/10.1016/j.canlet.2007.11.038.

    Article  CAS  PubMed  Google Scholar 

  86. Burne RA, Parsons DT, Marquis RE. Cloning and expression in Escherichia coli of the genes of the arginine deiminase system of Streptococcus sanguis NCTC 10904. Infect Immun. 1989;57:3540–8. https://doi.org/10.1128/iai.57.11.3540-3548.1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kondo K, Sone H, Yoshida H, Toida T, Kanatani K, Hong YM, et al. Cloning and sequence analysis of the arginine deiminase gene from Mycoplasma arginini. Mol Gen Genet. 1990;221:81–6. https://doi.org/10.1007/bf00280371.

    Article  CAS  PubMed  Google Scholar 

  88. Chen C-L, Hsu S-C, Ann DK, Yen Y, Kung H-J. Arginine signaling and cancer metabolism. Cancers (Basel). 2021;13:3541. https://doi.org/10.3390/cancers13143541.

    Article  CAS  PubMed  Google Scholar 

  89. Sugimura K, Ohno T, Kusuyama T, Azuma I. High sensitivity of human melanoma cell lines to the growth inhibitory activity of mycoplasmal arginine deiminase in vitro. Melanoma Res. 1992;2:191–6. https://doi.org/10.1097/00008390-199209000-00007.

    Article  CAS  PubMed  Google Scholar 

  90. Samadi M, Majidzadeh-A K, Salehi M, Jalili N, Noorinejad Z, Mosayebzadeh M, et al. Engineered hypoxia-responding Escherichia coli carrying cardiac peptide genes, suppresses tumor growth, angiogenesis and metastasis in vivo. J Biol Eng. 2021;15:20. https://doi.org/10.1186/s13036-021-00269-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Anderson JC, Clarke EJ, Arkin AP, Voigt CA. Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol. 2006;355:619–27. https://doi.org/10.1016/j.jmb.2005.10.076.

    Article  CAS  PubMed  Google Scholar 

  92. Flentie K, Kocher B, Gammon ST, Novack DV, McKinney JS, Piwnica-Worms D. A bioluminescent transposon reporter-trap identifies tumor-specific microenvironment-induced promoters in Salmonella for conditional bacterial-based tumor therapy. Cancer Discov. 2012;2:624–37. https://doi.org/10.1158/2159-8290.CD-11-0201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu W, Pu Y, Yao H, Lin H, Shi J. Microbiotic nanomedicine for tumor-specific chemotherapy synergizeinnate/adaptive antitumor immunity. Nano Today. 2022;42:101377. https://doi.org/10.1016/j.nantod.2022.101377.

    Article  CAS  Google Scholar 

  94. Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, Xu M, Penman S, Hoffman RM. Tumor targeting bacterial therapywith amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA. 2005;102:755–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xiong G, Husseiny MI, Song L, Erdreich-Epstein A, Shackleford GM, Seeger RC, Jäckel D, Hensel M, Metelitsa LS. Novel cancer vaccine based on genes of Salmonella pathogenicity island 2. Int J Cancer. 2010;126:2622–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Jellbauer S, Panthel K, Hetrodt JH, Rüssmann H. CD8 T-cell induction against vascular endothelial growth factor receptor 2by Salmonella for vaccination purposes against a murine melanoma. PLoS ONE. 2012;7: e34214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y. Two Listeria monocytogenes vaccine vectors that expressdifferent molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J Immunol. 2001;167:6471–9.

    Article  CAS  PubMed  Google Scholar 

  98. Decatur AL, Portnoy DA. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science. 2000;290:992–5.

    Article  CAS  PubMed  Google Scholar 

  99. Sewell DA, Shahabi V, Gunn GR, Pan ZK, Dominiecki ME, Paterson Y. Recombinant Listeria vaccines containing PEST sequences are potent immune adjuvants for the tumor-associated antigen human papillomavirus-16 E7. Cancer Res. 2004;64:8821–5.

    Article  CAS  PubMed  Google Scholar 

  100. Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in Cancer Therapy: Renaissance of an Old Concept. Int J Microbiol. 2016;2016:8451728.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Morales A, Eidinger D, Bruce AW. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol. 1976;116:180–3.

    Article  CAS  PubMed  Google Scholar 

  102. Biot C, Rentsch CA, Gsponer JR, Birkhäuser FD, Jusforgues-Saklani H, Lemaître F, Auriau C, Bachmann A, Bousso P, Demangel C, et al. Preexisting BCG-specific T cells improve intravesical immunotherapy for bladder cancer. Sci Transl Med. 2012;4:137–72.

    Article  Google Scholar 

  103. Roberts NJ, Zhang L, Janku F, Collins A, Bai RY, Staedtke V, Rusk AW, Tung D, Miller M, Roix J, et al. Intratumoralinjection of Clostridium novyi-NT spores induces antitumor responses. Sci Transl Med. 2014;6:249.

    Article  Google Scholar 

  104. Theys J, Lambin P. Clostridium to treat cancer: Dream or reality? Ann Transl Med. 2015;3:21.

    Google Scholar 

  105. Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B. Combination bacteriolytic therapy for the treatment ofexperimental tumors. Proc Natl Acad Sci USA. 2001;98:15155–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Park BW, Zhuang J, Yasa O, Sitti M. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano. 2017;11:8910–23.

    Article  CAS  PubMed  Google Scholar 

  107. Veena VK, Popavath RN, Kennedy K, Sakthivel N. In vitro antiproliferative, pro-apoptotic, antimetastatic and anti-inflammatory potential of 2,4-diacteylphloroglucinol (DAPG) by Pseudomonas aeruginosa strain FP10. Apoptosis. 2015;20:1281–95.

    Article  CAS  PubMed  Google Scholar 

  108. Luo M, Hu M, Feng X, XiaoLi W, Dong D, Wang W. Preventive effect of Lactobacillus reuteri on melanoma. Biomed Pharmacother. 2020;126: 109929.

    Article  CAS  PubMed  Google Scholar 

  109. Asoudeh-Fard A, Barzegari A, Dehnad A, Bastani S, Golchin A, Omidi Y. Lactobacillus plantarum induces apoptosisin oral cancer KB cells through upregulation of PTEN and downregulation of MAPK signalling pathways. Bioimpacts. 2017;7:193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Coley WB II. Contribution to the knowledge of sarcoma. Ann Surg. 1891;14:199–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Heppner F, Möse JR. The liquefaction (oncolysis) of malignant gliomas by a non pathogenic Clostridium. Acta Neurochir. 1978;42:123–5.

    Article  CAS  PubMed  Google Scholar 

  112. Norouzi Z, Salimi A, Halabian R, Fahimi H. Nisin, a potentbacteriocin and anti-bacterial peptide, attenuates expression of metastaticgenes in colorectal cancer cell lines. Microb Pathog. 2018;123:183–9. https://doi.org/10.1016/j.micpath.2018.07.006.

    Article  CAS  PubMed  Google Scholar 

  113. Lakritz JR, Poutahidis T, Levkovich T, Varian BJ, Ibrahim YM, Chatzigiagkos A, et al. Beneficial bacteria stimulate host immunecells to counteract dietary and genetic predisposition to mammary cancerin mice. Int J Cancer. 2014;135:529–40. https://doi.org/10.1002/ijc.28702.

    Article  CAS  PubMed  Google Scholar 

  114. Paiva AD, de Oliveira MD, de Paula SO, Baracat-Pereira MC, Breukink E, Mantovani HC. Toxicity of bovicin HC5 againstmammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology. 2012;158:2851–8. https://doi.org/10.1099/mic.0.062190-0.

    Article  CAS  PubMed  Google Scholar 

  115. Abd El Ghany K, Hamouda R, Abd Elhafez E, Mahrous H, Salem-Bekhit M, Hamza HA. A potential role of Lactobacillus acidophilus LA1and its exopolysaccharides on cancer cells in male albino mice. Biotechnol Biotechnol Equip. 2015;29:977–83. https://doi.org/10.1080/13102818.2015.1050455.

    Article  CAS  Google Scholar 

  116. Takagi A, Matsuzaki T, Sato M, Nomoto K, Morotomi M, Yokokura T. Enhancement of natural killer cytotoxicity delayed murinecarcinogenesis by a probiotic microorganism. Carcinogenesis. 2001;22:599–605. https://doi.org/10.1093/carcin/22.4.599.

    Article  CAS  PubMed  Google Scholar 

  117. Shi C-W, Cheng M-Y, Yang X, Lu Y-Y, Yin H-D, Zeng Y, et al. Probiotic Lactobacillus rhamnosus GG promotes mouse gut microbiotadiversity and T cell differentiation. Front Microbiol. 2020;11:607735. https://doi.org/10.3389/fmicb.2020.607735.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kitazawa H, Watanabe H, Shimosato T, Kawai Y, Itoh T, Saito T. Immunostimulatory oligonucleotide, CpG-like motif exists inLactobacillus delbrueckii ssp. bulgaricus NIAI B6. Int J Food Microbiol. 2003;85:11–21. https://doi.org/10.1016/S0168-1605(02)00477-4.

    Article  CAS  PubMed  Google Scholar 

  119. Fichera GA, Fichera M, Milone G. Antitumoural activity ofa cytotoxic peptide of Lactobacillus casei peptidoglycan and its interactionwith mitochondrial-bound hexokinase. Anticancer Drugs. 2016;27:609–19. https://doi.org/10.1097/CAD.0000000000000367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhou X, Hong T, Yu Q, Nie S, Gong D, Xiong T, et al. Exopolysaccharides from Lactobacillus plantarum NCU116 induce c-Jundependent Fas/Fasl-mediated apoptosis via TLR2 in mouse intestinal epithelialcancer cells. Sci Rep. 2017;7:14247. https://doi.org/10.1038/s41598-017-17885-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim JY, Woo HJ, Kim YS, Lee HJ. Screening forantiproliferative effects of cellular components from lactic acid bacteriaagainst human cancer cell lines. Biotechnol Lett. 2002;24:1431–6. https://doi.org/10.1023/A:1019875204323.

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajnish Narayanan.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakker, D.P., Narayanan, R. Arginine deiminase produced by lactic acid bacteria as a potent anti-cancer drug. Med Oncol 40, 175 (2023). https://doi.org/10.1007/s12032-023-02043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02043-4

Keywords

Navigation