Skip to main content

Advertisement

Log in

Cyclin-dependent kinases in breast cancer: expression pattern and therapeutic implications

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Presently, breast cancer (BC) is one of the most common malignancies diagnosed and the leading cause of tumor-related deaths among women worldwide. Cell cycle dysregulation is one of the hallmarks of cancer, resulting in uncontrolled cell proliferation. Cyclin-dependent kinases (CDKs) are central to the cell cycle control system, and deregulation of these kinases leads to the development of malignancies, including breast cancer. CDKs and cyclins have been reported as crucial components involved in tumor cell proliferation and metastasis. Given the aggressive nature, tumor heterogeneity, and chemoresistance, there is an urgent need to explore novel targets and therapeutics to manage breast cancer effectively. Inhibitors targeting CDKs modulate the cell cycle, thus throwing light upon their therapeutic aspect where the progression of tumor cells could be inhibited. This article gives a comprehensive account of CDKs in breast cancer progression and metastasis and recent developments in the modulation of CDKs in treating malignancies. We have also explored the expression pattern and prognostic significance of CDKs in breast cancer patients. The article will also shed light on the Implications of CDK inhibition and TGF-β signaling in breast cancer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BC:

Breast cancer

Lum A:

Luminal A

HER2+ :

Human epidermal growth factor-2

Lum B:

Luminal B

CDK:

Cyclin-dependent kinase

OS:

Overall survival

EMT:

Epithelial-mesenchymal transition

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA A Cancer J Clin. 2021;71(1):7–33.

    Article  Google Scholar 

  2. Mir MA, Qayoom H, Mehraj U, Nisar S, Bhat B, Wani NA. Targeting different pathways using novel combination therapy in triple negative breast Cancer. Curr Cancer Drug Targets. 2020;20(8):586–602.

    Article  CAS  PubMed  Google Scholar 

  3. Mehraj U, Aisha S, Sofi S, Mir MA. Expression pattern and prognostic significance of baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) in breast cancer: a comprehensive analysis. Adv Cancer Biol-Metastasis. 2022. https://doi.org/10.1016/j.adcanc.2022.100037.

    Article  Google Scholar 

  4. Mir M. Combination therapies and their effectiveness in breast cancer treatment. New York: Nova Science Publishers; 2021. https://doi.org/10.52305/WXJL6770.

    Book  Google Scholar 

  5. Jan S, Qayoom H, Mehraj U, Mir M. Therapeutic options for breast cancer. In: Mir MA, editor. Combination therapies and their effectiveness in breast cancer treatment. New York: Nova Science Publishers; 2021. https://doi.org/10.52305/TILJ1241.

    Chapter  Google Scholar 

  6. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  7. Harbeck N. Breast cancer is a systemic disease optimally treated by a multidisciplinary team. Nat Rev Dis Primers. 2020;6(1):1–2.

    Article  Google Scholar 

  8. Mir M, Jan S, Mehraj U. Triple-negative breast cancer—an aggressive subtype of breast cancer. In: Combinational therapy in triple negative breast cancer. New York: Elsevier; 2022. p. 1–35.

    Google Scholar 

  9. Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duffy MJ, Walsh S, McDermott EW, Crown J. Biomarkers in breast cancer: where are we and where are we going? Adv Clin Chem. 2015;71:1–23.

    Article  CAS  PubMed  Google Scholar 

  11. Jan S, Mir M. Therapeutic landscape of metaplastic breast cancer. In: Mir MA, editor. Combination therapies and their effectiveness in breast cancer treatment. New York: Nova Science Publishers; 2021.

    Google Scholar 

  12. Mehraj U, Dar AH, Wani NA, Mir MA. Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother Pharmacol. 2021. https://doi.org/10.1007/s00280-020-04222-w.

    Article  PubMed  Google Scholar 

  13. Mir M, Jan S, Mehraj U. Novel biomarkers in triple-negative breast cancer-role and perspective (Chapter-2). New York: Elsevier; 2022. p. 36–72.

    Google Scholar 

  14. Mir M, Sofi S, Qayoom H. The interplay of immunotherapy, chemotherapy, and targeted therapy in tripple negative breast cancer (TNBC) Chapter-6. New York: Elsevier; 2022. p. 201–44.

    Google Scholar 

  15. Mir M, Sofi S, Qayoom H. Different drug delivery approaches in combinational therapy in TNBC (Chapter-8). New York: Elsevier; 2022. p. 278–311.

    Google Scholar 

  16. Nounou MI, ElAmrawy F, Ahmed N, Abdelraouf K, Goda S, Syed-Sha-Qhattal H. Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer. 2015. https://doi.org/10.4137/BCBCR.S29420.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mehraj U, Ganai RA, Macha MA, Hamid A, Zargar MA, Bhat AA, Nasser MW, Haris M, Batra SK, Alshehri B. The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities. Cell Oncol. 2021. https://doi.org/10.1007/s13402-021-00634-.

    Article  Google Scholar 

  18. Mir M, Sofi S, Qayoom H. Targeting biologically specific molecules in triple negative breast canceR (TNBC) Chapter-7. New York: Elsevier; 2022. p. 245–77.

    Google Scholar 

  19. Qayoom H, Bhat BA, Mehraj U, Mir MA. Rising trends of cancers in kashmir valley: distribution pattern, incidence and causes. J Oncol Res Treat. 2020;5(150):2.

    Google Scholar 

  20. Mir MA, Mehraj U. Double-crosser of the immune system: macrophages in tumor progression and metastasis. Curr Immunol Rev. 2019;15(2):172–84.

    Article  CAS  Google Scholar 

  21. Lu Y. The role of cyclin-dependent kinases on the metastasis of breast cancer. Novel Approach Cancer Study. 2020. https://doi.org/10.31031/NACS.2020.04.000594.

    Article  Google Scholar 

  22. Ding L, Cao J, Lin W, Chen H, Xiong X, Ao H, Yu M, Lin J, Cui Q. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int J Mol Sci. 2020;21(6):1960.

    Article  CAS  PubMed Central  Google Scholar 

  23. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  24. Koboldt D, Fulton R, McLellan M, Schmidt H, Kalicki-Veizer J, McMichael J, Fulton L, Dooling D, Ding L, Mardis E. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  CAS  Google Scholar 

  25. Nicolini A, Ferrari P, Duffy MJ. Prognostic and predictive biomarkers in breast cancer: Past, present and future. Semin Cancer Biol. 2018;52:56–73.

    Article  CAS  PubMed  Google Scholar 

  26. Thu KL, Soria-Bretones I, Mak TW, Cescon DW. Targeting the cell cycle in breast cancer: towards the next phase. Cell Cycle. 2018;17(15):1871–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martínez-Alonso D, Malumbres M. Mammalian cell cycle cyclins. Semin Cell Dev Biol. 2020;107:28–35.

    Article  PubMed  CAS  Google Scholar 

  28. Swaffer MP, Jones AW, Flynn HR, Snijders AP, Nurse P. CDK substrate phosphorylation and ordering the cell cycle. Cell. 2016;167(7):1750–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barnum KJ, O’Connell MJ. Cell cycle regulation by checkpoints. In: Cell cycle control. New York: Springer; 2014. p. 29–40.

    Chapter  Google Scholar 

  30. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discovery. 2015;14(2):130–46.

    Article  CAS  PubMed  Google Scholar 

  31. Sivakumar S, Gorbsky GJ. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol. 2015;16(2):82–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou Z, He M, Shah AA, Wan Y. Insights into APC/C: from cellular function to diseases and therapeutics. Cell Div. 2016;11(1):1–18.

    Article  CAS  Google Scholar 

  33. Senft D, Qi J, Ze’ev AR. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer. 2018;18(2):69–88.

    Article  CAS  PubMed  Google Scholar 

  34. Solaki M, Ewald JC. Fueling the cycle: CDKs in carbon and energy metabolism. Frontiers in cell and developmental biology. 2018;6:93.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140(15):3079–93.

    Article  CAS  PubMed  Google Scholar 

  36. Lee Y, Lahens NF, Zhang S, Bedont J, Field JM, Sehgal A. G1/S cell cycle regulators mediate effects of circadian dysregulation on tumor growth and provide targets for timed anticancer treatment. PLoS Biol. 2019;17(4): e3000228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hafeez S, Urooj M, Saleem S, Gillani Z, Shaheen S, Qazi MH, Naseer MI, Iqbal Z, Ansari SA, Haque A. BAD, a Proapoptotic protein, Escapes ERK/RSK phosphorylation in Deguelin and siRNA-treated Hela cells. PLoS ONE. 2016;11(1): e0145780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wenzel ES, Singh ATK. Cell-cycle checkpoints and aneuploidy on the path to cancer. In Vivo. 2018;32(1):1–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yue X, Zhao Y, Xu Y, Zheng M, Feng Z, Hu W. Mutant p53 in cancer: accumulation, gain-of-function, and therapy. J Mol Biol. 2017;429(11):1595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mir MA, Hamdani SS, Sheikh BA, Mehraj U. Recent advances in metabolites from medicinal plants in cancer prevention and treatment. Curr Immunol Rev. 2019;15(2):185–201.

    Article  CAS  Google Scholar 

  41. Bashour SI, Doostan I, Keyomarsi K, Valero V, Ueno NT, Brown PH, Litton JK, Koenig KB, Karuturi M, Abouharb S. Rapid breast cancer disease progression following cyclin dependent kinase 4 and 6 inhibitor discontinuation. J Cancer. 2017;8(11):2004–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Finn RS, Aleshin A, Slamon DJ. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res. 2016;18(1):1–11.

    Article  CAS  Google Scholar 

  43. Santo L, Siu KT, Raje N. Raje N Targeting cyclin-dependent kinases and cell cycle progression in human cancers. Semin Oncol. 2015;42:788–800.

    Article  CAS  PubMed  Google Scholar 

  44. Zardavas D, Pondé N, Tryfonidis K. CDK4/6 blockade in breast cancer: current experience and future perspectives. Expert Opin Investig Drugs. 2017;26(12):1357–72.

    Article  CAS  PubMed  Google Scholar 

  45. Tadesse S, Anshabo AT, Portman N, Lim E, Tilley W, Caldon CE, Wang S. Targeting CDK2 in cancer: challenges and opportunities for therapy. Drug Discovery Today. 2020;25(2):406–13.

    Article  CAS  PubMed  Google Scholar 

  46. He X, Xiang H, Zong X, Yan X, Yu Y, Liu G, Zou D, Yang H. CDK2-AP1 inhibits growth of breast cancer cells by regulating cell cycle and increasing docetaxel sensitivity in vivo and in vitro. Cancer Cell Int. 2014;14(1):1–10.

    Article  CAS  Google Scholar 

  47. Santamaría D, Barrière C, Cerqueira A, Hunt S, Tardy C, Newton K, Cáceres JF, Dubus P, Malumbres M, Barbacid M. Cdk1 is sufficient to drive the mammalian cell cycle. Nature. 2007;448(7155):811–5.

    Article  PubMed  CAS  Google Scholar 

  48. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66.

    Article  CAS  PubMed  Google Scholar 

  49. Barascu A, Besson P, Le Floch O, Bougnoux P, Jourdan M-L. CDK1-cyclin B1 mediates the inhibition of proliferation induced by omega-3 fatty acids in MDA-MB-231 breast cancer cells. Int J Biochem Cell Biol. 2006;38(2):196–208.

    Article  CAS  PubMed  Google Scholar 

  50. Izadi S, Nikkhoo A, Hojjat-Farsangi M, Namdar A, Azizi G, Mohammadi H, Yousefi M, Jadidi-Niaragh F. CDK1 in breast cancer: implications for theranostic potential. Anti-Cancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2020;20(7):758–67.

    Article  CAS  Google Scholar 

  51. Patel H, Abduljabbar R, Lai C-F, Periyasamy M, Harrod A, Gemma C, Steel JH, Patel N, Busonero C, Jerjees D. Expression of CDK7, cyclin H, and MAT1 is elevated in breast cancer and is prognostic in estrogen receptor-positive breast cancer. Clin Cancer Res. 2016;22(23):5929–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Y, Zhang T, Kwiatkowski N, Abraham BJ, Lee TI, Xie S, Yuzugullu H, Von T, Li H, Lin Z. CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell. 2015;163(1):174–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li B, Chonghaile TN, Fan Y, Madden SF, Klinger R, O’Connor AE, Walsh L, O’Hurley G, Udupi GM, Joseph J. Therapeutic rationale to target highly expressed CDK7 conferring poor outcomes in triple-negative breast cancer. Can Res. 2017;77(14):3834–45.

    Article  CAS  Google Scholar 

  54. Knab VM, Gotthardt D, Klein K, Grausenburger R, Heller G, Menzl I, Prinz D, Trifinopoulos J, List J, Fux D. Triple-negative breast cancer cells rely on kinase-independent functions of CDK8 to evade NK-cell-mediated tumor surveillance. Cell Death Dis. 2021;12(11):1–12.

    Article  CAS  Google Scholar 

  55. Crown J. CDK8: a new breast cancer target. Oncotarget. 2017;8(9):14269–70. https://doi.org/10.18632/oncotarget.15354.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schlafstein AJ, Withers AE, Rudra S, Danelia D, Switchenko JM, Mister D, Harari S, Zhang H, Daddacha W, Ehdaivand S. CDK9 expression shows role as a potential prognostic biomarker in breast cancer patients who fail to achieve pathologic complete response after neoadjuvant chemotherapy. Int J Breast Cancer. 2018. https://doi.org/10.1155/2018/6945129.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Del Re M, Bertolini I, Crucitta S, Fontanelli L, Rofi E, De Angelis C, Diodati L, Cavallero D, Gianfilippo G, Salvadori B. Overexpression of TK1 and CDK9 in plasma-derived exosomes is associated with clinical resistance to CDK4/6 inhibitors in metastatic breast cancer patients. Breast Cancer Res Treat. 2019;178(1):57–62.

    Article  PubMed  CAS  Google Scholar 

  58. Mehraj U, Qayoom H, Mir MA. Prognostic significance and targeting tumor-associated macrophages in cancer: new insights and future perspectives. Breast Cancer. 2021. https://doi.org/10.1007/s12282-021-01231-2.

    Article  PubMed  Google Scholar 

  59. Yazici H, Akin B. Molecular genetics of metastatic breast cancer. In: Lasfar A, Cohen-Solal K, editors. Tumor progression and metastasis. London: IntechOpen; 2019.

    Google Scholar 

  60. Qureshi MFH, Shah M, Lakhani M, Abubaker ZJ, Mohammad D, Farhan H, Zia I, Tafveez R, Khan ST, Rubina G. Gene signatures of cyclin-dependent kinases: a comparative study in naïve early and advanced stages of lung metastasis breast cancer among pre-and post-menopausal women. Genes Cancer. 2021;12:1.

    Article  CAS  Google Scholar 

  61. Redig AJ, McAllister SS. Breast cancer as a systemic disease: a view of metastasis. J Intern Med. 2013;274(2):113–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Padhye A, Konen J, Rodriguez BL, Fradette J, Ochieng J, Diao L, Wang J, Lu W, Solis L, Batra H. Targeting CDK4 overcomes EMT-mediated tumor heterogeneity and therapeutic resistance in KRAS mutant lung cancer. JCI Insight. 2021. https://doi.org/10.1172/jci.insight.148392.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Krajewski A, Gagat M, Mikołajczyk K, Izdebska M, Żuryń A, Grzanka A. Cyclin F downregulation affects epithelial-mesenchymal transition increasing proliferation and migration of the A-375 melanoma cell line. Cancer Manage Res. 2020;12:13085.

    Article  CAS  Google Scholar 

  64. Zhang Z, Li J, Ou Y, Yang G, Deng K, Wang Q, Wang Z, Wang W, Zhang Q, Wang H. CDK4/6 inhibition blocks cancer metastasis through a USP51-ZEB1-dependent deubiquitination mechanism. Signal Transduct Target Ther. 2020;5(1):1–13.

    Google Scholar 

  65. Liang Q, Li L, Zhang J, Lei Y, Wang L, Liu D-X, Feng J, Hou P, Yao R, Zhang Y. CDK5 is essential for TGF-β1-induced epithelial-mesenchymal transition and breast cancer progression. Sci Rep. 2013;3(1):1–13.

    Article  Google Scholar 

  66. Li N, Zheng S, Xue Z, Xiong Z, Zou Y, Tang Y, Wei W-D, Yang L. Expression and prognostic value of transcription-associated cyclin-dependent kinases in human breast cancer. Aging (Albany, NY). 2021;13(6):8095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Boström P, Söderström M, Palokangas T, Vahlberg T, Collan Y, Carpen O, Hirsimäki P. Analysis of cyclins A, B1, D1 and E in breast cancer in relation to tumour grade and other prognostic factors. BMC Res Notes. 2009;2(1):1–8.

    Article  CAS  Google Scholar 

  68. Murad H, Hawat M, Ekhtiar A, AlJapawe A, Abbas A, Darwish H, Sbenati O, Ghannam A. Induction of G1-phase cell cycle arrest and apoptosis pathway in MDA-MB-231 human breast cancer cells by sulfated polysaccharide extracted from Laurencia papillosa. Cancer Cell Int. 2016;16(1):1–11.

    Article  CAS  Google Scholar 

  69. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, Zhu J, Haussler D. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675–8. https://doi.org/10.1038/s41587-020-0546-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang M, Zhang L, Hei R, Li X, Cai H, Wu X, Zheng Q, Cai C. CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res. 2021;11(5):1913.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123(3):725–31.

    Article  PubMed  CAS  Google Scholar 

  72. Jessen BA, Lee L, Koudriakova T, Haines M, Lundgren K, Price S, Nonomiya J, Lewis C, Stevens GJ. Peripheral white blood cell toxicity induced by broad spectrum cyclin-dependent kinase inhibitors. J Appl Toxicol. 2007;27(2):133–42.

    Article  CAS  PubMed  Google Scholar 

  73. Fornier MN, Rathkopf D, Shah M, Patil S, O’Reilly E, Tse AN, Hudis C, Lefkowitz R, Kelsen DP, Schwartz GK. Phase I dose-finding study of weekly docetaxel followed by Flavopiridol for patients with advanced solid tumors. Clin Cancer Res. 2007;13(19):5841–6.

    Article  CAS  PubMed  Google Scholar 

  74. Sausville EA, Arbuck SG, Messmann R, Headlee D, Bauer KS, Lush RM, Murgo A, Figg WD, Lahusen T, Jaken S. Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol. 2001;19(8):2319–33.

    Article  CAS  PubMed  Google Scholar 

  75. Kortmansky J, Shah MA, Kaubisch A, Weyerbacher A, Yi S, Tong W, Sowers R, Gonen M, O’Reilly E, Kemeny N. Phase I trial of the cyclin-dependent kinase inhibitor and protein kinase C inhibitor 7-hydroxystaurosporine in combination with Fluorouracil in patients with advanced solid tumors. J Clin Oncol. 2005;23(9):1875–84.

    Article  CAS  PubMed  Google Scholar 

  76. Toogood PL, Harvey PJ, Repine JT, Sheehan DJ, VanderWel SN, Zhou H, Keller PR, McNamara DJ, Sherry D, Zhu T. Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J Med Chem. 2005;48(7):2388–406.

    Article  CAS  PubMed  Google Scholar 

  77. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, Albassam M, Zheng X, Leopold WR, Pryer NK. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3(11):1427–38.

    Article  CAS  PubMed  Google Scholar 

  78. Schwartz GK, LoRusso PM, Dickson MA, Randolph SS, Shaik MN, Wilner KD, Courtney R, O’Dwyer PJ. Phase I study of PD 0332991, a cyclin-dependent kinase inhibitor, administered in 3-week cycles (Schedule 2/1). Br J Cancer. 2011;104(12):1862–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Finn RS, Crown JP, Boer K, Lang I, Parikh RJ, Breazna A, Ho SN, Kim ST, Randolph S, Slamon DJ. 100O results of a randomized phase 2 study of Pd 0332991, a cyclin-dependent kinase (Cdk) 4/6 inhibitor, in combination with letrozole vs letrozole alone for first-line treatment of ER+/Her2-advanced breast cancer (BC). Ann Oncol. 2012;23:ii43.

    Article  Google Scholar 

  80. Lin ZP, Zhu Y-L, Ratner ES. Targeting cyclin-dependent kinases for treatment of gynecologic cancers. Front Oncol. 2018;8:303.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Vassilev LT, Tovar C, Chen S, Knezevic D, Zhao X, Sun H, Heimbrook DC, Chen L. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci. 2006;103(28):10660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cicenas J, Kalyan K, Sorokinas A, Stankunas E, Levy J, Meskinyte I, Stankevicius V, Kaupinis A, Valius M. Roscovitine in cancer and other diseases. Ann Transl Med. 2015;3(10):135.

    PubMed  PubMed Central  Google Scholar 

  83. Johnson N, Li Y-C, Walton ZE, Cheng KA, Li D, Rodig SJ, Moreau LA, Unitt C, Bronson RT, Thomas HD. Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition. Nat Med. 2011;17(7):875–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xia Q, Cai Y, Peng R, Wu G, Shi Y, Jiang W. The CDK1 inhibitor RO3306 improves the response of BRCA-proficient breast cancer cells to PARP inhibition. Int J Oncol. 2014;44(3):735–44.

    Article  CAS  PubMed  Google Scholar 

  85. Jeong CH, Ryu H, Kim DH, Cheng WN, Yoon JE, Kang S, Han SG. Piperlongumine induces cell cycle arrest via reactive oxygen species accumulation and IKKβ suppression in human breast cancer cells. Antioxidants. 2019;8(11):553.

    Article  CAS  PubMed Central  Google Scholar 

  86. Quereda V, Bayle S, Vena F, Frydman SM, Monastyrskyi A, Roush WR, Duckett DR. Therapeutic targeting of CDK12/CDK13 in triple-negative breast cancer. Cancer Cell. 2019;36(5):545–58.

    Article  CAS  PubMed  Google Scholar 

  87. Liu Q, Cao Y, Zhou P, Gui S, Wu X, Xia Y, Tu J. Panduratin A inhibits cell proliferation by inducing G0/G1 phase cell cycle arrest and induces apoptosis in breast cancer cells. Biomolecules & therapeutics. 2018;26(3):328.

    Article  CAS  Google Scholar 

  88. Kim D, Wang CY, Hu R, Lee JY, Luu T-T-T, Park H-J, Lee SK. Antitumor activity of vanicoside B isolated from Persicaria dissitiflora by targeting CDK8 in triple-negative breast cancer cells. J Nat Prod. 2019;82(11):3140–9.

    Article  CAS  PubMed  Google Scholar 

  89. Lee S-OK, Lee M-H, Lee K-R, Lee E-O, Lee H-J. Fomes fomentarius ethanol extract exerts inhibition of cell growth and motility induction of apoptosis via targeting AKT in human breast cancer MDA-MB-231 cells. Int J Mol Sci. 2019;20(5):1147.

    Article  PubMed Central  CAS  Google Scholar 

  90. Chang L-C, Hsieh M-T, Yang J-S, Lu C-C, Tsai F-J, Tsao J-W, Chiu Y-J, Kuo S-C, Lee K-H. Effect of bis (hydroxymethyl) alkanoate curcuminoid derivative MTH-3 on cell cycle arrest, apoptotic and autophagic pathway in triple-negative breast adenocarcinoma MDA-MB-231 cells: An in vitro study. Int J Oncol. 2018;52(1):67–76.

    CAS  PubMed  Google Scholar 

  91. Abd El-Hafeez AA, Khalifa HO, Mahdy EAM, Sharma V, Hosoi T, Ghosh P, Ozawa K, Montano MM, Fujimura T, Ibrahim ARN. Anticancer effect of nor-wogonin (5, 7, 8-trihydroxyflavone) on human triple-negative breast cancer cells via downregulation of TAK1, NF-κB, and STAT3. Pharmacol Rep. 2019;71(2):289–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu D, You P, Luo Y, Yang M, Liu Y. Galangin induces apoptosis in MCF-7 human breast cancer cells through mitochondrial pathway and phosphatidylinositol 3-kinase/Akt inhibition. Pharmacology. 2018;102(1–2):58–66.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang W, Jiang H, Chen Y, Ren F. Resveratrol chemosensitizes adriamycin-resistant breast cancer cells by modulating miR-122-5p. J Cell Biochem. 2019;120(9):16283–92.

    Article  CAS  PubMed  Google Scholar 

  94. Cheng X, Tan S, Duan F, Yuan Q, Li Q, Deng G. Icariin induces apoptosis by suppressing autophagy in tamoxifen-resistant breast cancer cell line MCF-7/TAM. Breast Cancer. 2019;26(6):766–75.

    Article  PubMed  Google Scholar 

  95. Jin J, Fang H, Yang F, Ji W, Guan N, Sun Z, Shi Y, Zhou G, Guan X. Combined inhibition of ATR and WEE1 as a novel therapeutic strategy in triple-negative breast cancer. Neoplasia. 2018;20(5):478–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hasanpourghadi M, Pandurangan AK, Karthikeyan C, Trivedi P, Mustafa MR. Mechanisms of the antitumor activity of Methyl 2-(-5-fluoro-2-hydroxyphenyl)-1 H-benzo [d] imidazole-5-carboxylate against breast cancer in vitro and in vivo. Oncotarget. 2017;8(17):28840.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cretella D, Fumarola C, Bonelli M, Alfieri R, La Monica S, Digiacomo G, Cavazzoni A, Galetti M, Generali D, Petronini PG. Pre-treatment with the CDK4/6 inhibitor palbociclib improves the efficacy of paclitaxel in TNBC cells. Sci Rep. 2019;9(1):1–11.

    Article  CAS  Google Scholar 

  98. Decker JT, Ma JA, Shea LD, Jeruss JS. Implications of TGFβ signaling and CDK inhibition for the treatment of breast cancer. Cancers. 2021;13(21):5343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Buck MB, Knabbe C. TGF-beta signaling in breast cancer. Ann N Y Acad Sci. 2006;1089(1):119–26.

    Article  CAS  PubMed  Google Scholar 

  100. Decker JT, Kandagatla P, Wan L, Bernstein R, Ma JA, Shea LD, Jeruss JS. Cyclin E overexpression confers resistance to trastuzumab through noncanonical phosphorylation of SMAD3 in HER2+ breast cancer. Cancer Biol Ther. 2020;21(11):994–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhao Y, Ma J, Fan Y, Wang Z, Tian R, Ji W, Zhang F, Niu R. TGF-β transactivates EGFR and facilitates breast cancer migration and invasion through canonical Smad3 and ERK/Sp1 signaling pathways. Mol Oncol. 2018;12(3):305–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ, Feng YM. Cancer-associated fibroblasts induce epithelial–mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br J Cancer. 2014;110(3):724–32.

    Article  CAS  PubMed  Google Scholar 

  103. Zhang F, Wang H, Wang X, Jiang G, Liu H, Zhang G, Wang H, Fang R, Bu X, Cai S. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget. 2016;7(32):52294.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Baas M, Besançon A, Goncalves T, Valette F, Yagita H, Sawitzki B, Volk H-D, Waeckel-Enée E, Rocha B, Chatenoud L. TGFβ-dependent expression of PD-1 and PD-L1 controls CD8+ T cell anergy in transplant tolerance. eLife. 2016;5:e08133.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jammu Kashmir Science Technology and Innovation Council (JKST&IC), Department of Science and Technology, Govt of J&K.

Funding

The work was supported by Research Grant sanctioned to Manzoor Ahmad Mir by Jammu Kashmir Science Technology and Innovation Council (JKST&IC), Department of Science and Technology, Govt of J&K vide Grant NO. JKST&IC/SRE/885-87. The authors would also like to thank Almaarefa University Riyadh, Saudi Arabia, for providing support (TUMA-2021-1) to this study.

Author information

Authors and Affiliations

Authors

Contributions

MAM initiated the study and designed the plan. SS wrote the manuscript and designed the figures and tables. UM, SA, HQ, AA, SMBA & MAM revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Manzoor A. Mir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofi, S., Mehraj, U., Qayoom, H. et al. Cyclin-dependent kinases in breast cancer: expression pattern and therapeutic implications. Med Oncol 39, 106 (2022). https://doi.org/10.1007/s12032-022-01731-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01731-x

Keywords

Navigation