Skip to main content

Advertisement

Log in

LDLRAD2 promotes pancreatic cancer progression through Akt/mTOR signaling pathway

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Low-density lipoprotein receptor class A domain containing 2 (LDLRAD2) acts as a protein-coding gene in a large number of human diseases. However, the potential roles and underlying mechanism in pancreatic cancer remains unclear. Therefore, this study was conducted to address this question. Herein, we found that the expression of LDLRAD2 was elevated in pancreatic cancer tissues and cell lines. LDLRAD2 knockdown inhibited pancreatic cancer cell proliferation, migration, and invasion in vitro. Besides, silencing LDLRAD2 impaired tumor growth and metastasis in vivo and up-regulated the E-Cadherin level, whereas down-regulated the expression of N-Cadherin and Vimentin levels, which indicating that LDLRAD2 knockdown suppresses EMT. Additionally, LDLRAD2 knockdown decreased the Warburg effect and glycolytic enzymes expression. Pathway scan assay and western blotting assay indicated that LDLRAD2 knockdown significantly down-regulated the expression of phosphorylation of Akt and phosphorylation of mTOR, which suggested that knockdown of LDLRAD2 inhibits Akt/mTOR signaling pathway. Taken together, these findings suggested that LDLRAD2 may be an oncogene in pancreatic cancer via modulating Akt/mTOR signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maitra A. Pancreatic cancer hidden in plain sight. Nature. 2020;581(7806):34–5.

    Article  CAS  Google Scholar 

  2. Kozlowski MR, Kozlowski RE. A novel, small peptide with activity against human pancreatic cancer. Am J Cancer Res. 2020;10(5):1356–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Ye J, et al. PRDM3 attenuates pancreatitis and pancreatic tumorigenesis by regulating inflammatory response. Cell Death Dis. 2020;11(3):187.

    Article  CAS  Google Scholar 

  4. Menini S, et al. Diabetes promotes invasive pancreatic cancer by increasing systemic and tumour carbonyl stress in Kras(G12D/+) mice. J Exp Clin Cancer Res. 2020;39(1):152.

    Article  CAS  Google Scholar 

  5. Wei Y, et al. LDLRAD2 overexpression predicts poor prognosis and promotes metastasis by activating Wnt/beta-catenin/EMT signaling cascade in gastric cancer. Aging (Albany NY). 2019;11(20):8951–68.

    Article  CAS  Google Scholar 

  6. Kuwada K, et al. The epithelial-to-mesenchymal transition induced by tumor-associated macrophages confers chemoresistance in peritoneally disseminated pancreatic cancer. J Exp Clin Cancer Res. 2018;37(1):307.

    Article  CAS  Google Scholar 

  7. Wang C, Yin W, Liu H. MicroRNA-10a promotes epithelial-to-mesenchymal transition and stemness maintenance of pancreatic cancer stem cells via upregulating the Hippo signaling pathway through WWC2 inhibition. J Cell Biochem. 2020;121(11):4505–21.

    Article  CAS  Google Scholar 

  8. Li M, et al. miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. Am J Cancer Res. 2020;10(1):38–59.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Xu M, et al. miR-22 suppresses epithelial–mesenchymal transition in bladder cancer by inhibiting Snail and MAPK1/Slug/vimentin feedback loop. Cell Death Dis. 2018;9(2):209.

    Article  CAS  Google Scholar 

  10. Yoshida J, et al. Metformin inhibits TGFbeta1-induced epithelial–mesenchymal transition and liver metastasis of pancreatic cancer cells. Oncol Rep. 2020;44(1):371–81.

    Article  CAS  Google Scholar 

  11. Shen L, et al. Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP. Proc Natl Acad Sci U S A. 2015;112(17):5425–30.

    Article  CAS  Google Scholar 

  12. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.

    Article  CAS  Google Scholar 

  13. Cantor JR, Sabatini DM. Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2012;2(10):881–98.

    Article  CAS  Google Scholar 

  14. Qiao S, et al. REDD1 loss reprograms lipid metabolism to drive progression of RAS mutant tumors. Genes Dev. 2020;34(11–12):751–66.

    Article  CAS  Google Scholar 

  15. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

    Article  CAS  Google Scholar 

  16. Ji S, et al. FBW7 (F-box and WD Repeat Domain-Containing 7) negatively regulates glucose metabolism by targeting the c-Myc/TXNIP (Thioredoxin-Binding Protein) axis in pancreatic cancer. Clin Cancer Res. 2016;22(15):3950–60.

    Article  CAS  Google Scholar 

  17. Carmona-Fontaine C, et al. Emergence of spatial structure in the tumor microenvironment due to the Warburg effect. Proc Natl Acad Sci U S A. 2013;110(48):19402–7.

    Article  CAS  Google Scholar 

  18. Ye H, et al. Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma. Cell Death Dis. 2018;9(5):453.

    Article  CAS  Google Scholar 

  19. Zhang M, et al. SOCS5 inhibition induces autophagy to impair metastasis in hepatocellular carcinoma cells via the PI3K/Akt/mTOR pathway. Cell Death Dis. 2019;10(8):612.

    Article  CAS  Google Scholar 

  20. Su CC. Tanshinone IIA can inhibit MiaPaCa2 human pancreatic cancer cells by dual blockade of the Ras/Raf/MEK/ERK and PI3K/AKT/mTOR pathways. Oncol Rep. 2018;40(5):3102–11.

    PubMed  CAS  Google Scholar 

  21. Xu X, et al. Indole-2-carboxamide derivative LG25 inhibits triple-negative breast cancer growth by suppressing Akt/mTOR/NF-kappaB signalling pathway. Drug Des Dev Ther. 2019;13:3539–50.

    Article  CAS  Google Scholar 

  22. Li J, et al. OTUB2 stabilizes U2AF2 to promote the Warburg effect and tumorigenesis via the AKT/mTOR signaling pathway in non-small cell lung cancer. Theranostics. 2019;9(1):179–95.

    Article  CAS  Google Scholar 

  23. Yan X, et al. Knockdown of KRT17 decreases osteosarcoma cell proliferation and the Warburg effect via the AKT/mTOR/HIF1alpha pathway. Oncol Rep. 2020;44(1):103–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Youth Science Foundation of Jiangxi Province (#20202BAB216027), Jiangxi Provincial Education Fund Project (#701223001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwang Song.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Huang, W., Han, Q. et al. LDLRAD2 promotes pancreatic cancer progression through Akt/mTOR signaling pathway. Med Oncol 38, 2 (2021). https://doi.org/10.1007/s12032-020-01451-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-020-01451-0

Keywords

Navigation