Skip to main content

Advertisement

Log in

The increase in the expression and hypomethylation of MUC4 gene with the progression of pancreatic ductal adenocarcinoma

  • Original paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The MUC4 gene could have a key role in the progression of pancreatic cancer, but the quantitative measurement of its expression in clinical tissue samples remains a challenge. The correlations between MUC4 promoter methylation status in vivo and either pancreatic cancer progression or MUC4 mRNA expression need to be demonstrated. We used the techniques of quantitative real-time PCR and DNA methylation-specific PCR combined microdissection to precisely detect MUC4 expression and promoter methylation status in 116 microdissected foci from 57 patients with pancreatic ductal adenocarcinoma. Both mRNA expression and hypomethylation frequency increased from normal to precancerous lesions to pancreatic cancer. Multivariate Cox regression analysis showed that high-level MUC4 expression (P = 0.008) and tumor-node-metastasis staging (P = 0.038) were significant independent risk factors for predicting the prognosis of 57 patients. The MUC4 mRNA expression was not significantly correlated with promoter methylation status in 30 foci of pancreatic ductal adenocarcinoma. These results suggest that high mRNA expression and hypomethylation of the MUC4 gene could be involved in carcinogenesis and in the malignant development of pancreatic ductal adenocarcinoma. The MUC4 mRNA expression may become a new prognostic marker for pancreatic cancer. Microdissection-based quantitative real-time PCR and methylation-specific PCR contribute to the quantitative detection of MUC4 expression in clinical samples and reflect the epigenetic regulatory mechanisms of MUC4 in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4:45–60.

    Article  PubMed  CAS  Google Scholar 

  2. Porchet N, et al. Molecular cloning and chromosomal localization of a novel human tracheobronchial mucin cDNA containing tandemly repeated sequences of 48 base pairs. Biochem Biophys Res Commun. 1991;175:414–22.

    Article  PubMed  CAS  Google Scholar 

  3. Hollingsworth MA, et al. Expression of MUC1, MUC2, MUC3 and MUC4 mucin mRNAs in human pancreatic and intestinal tumor cell lines. Int J Cancer. 1994;57:198–203.

    Article  PubMed  CAS  Google Scholar 

  4. Balague C, et al. Altered expression of MUC2, MUC4, and MUC5 mucin genes in pancreas tissues and cancer cell lines. Gastroenterology. 1994;106:1054–61.

    PubMed  CAS  Google Scholar 

  5. Balague C, et al. In situ hybridization shows distinct patterns of mucin gene expression in normal, benign, and malignant pancreas tissues. Gastroenterology. 1995;109:953–64.

    Article  PubMed  CAS  Google Scholar 

  6. Andrianifahanana M, et al. Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: a potential role of MUC4 as a tumor marker of diagnostic significance. Clin Cancer Res. 2001;7:4033–40.

    PubMed  CAS  Google Scholar 

  7. Swartz MJ, et al. MUC4 expression increases progressively in pancreatic intraepithelial neoplasia. Am J Clin Pathol. 2002;117:791–6.

    Article  PubMed  Google Scholar 

  8. Park HU, et al. Aberrant expression of MUC3 and MUC4 membrane-associated mucins and sialyl Le(x) antigen in pancreatic intraepithelial neoplasia. Pancreas. 2003;26:e48–54.

    Article  PubMed  Google Scholar 

  9. Bhardwaj A, et al. Double immunohistochemical staining with MUC4/p53 is useful in the distinction of pancreatic adenocarcinoma from chronic pancreatitis: a tissue microarray-based study. Arch Pathol Lab Med. 2007;131:556–62.

    PubMed  Google Scholar 

  10. Saitou M, et al. MUC4 expression is a novel prognostic factor in patients with invasive ductal carcinoma of the pancreas. J Clin Pathol. 2005;58:845–52.

    Article  PubMed  CAS  Google Scholar 

  11. Singh AP, Moniaux N, Chauhan SC, Meza JL, Batra SK. Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Res. 2004;64:622–30.

    Article  PubMed  CAS  Google Scholar 

  12. Chaturvedi P, et al. MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins. Mol Cancer Res. 2007;5:309–20.

    Article  PubMed  CAS  Google Scholar 

  13. Bafna S, Kaur S, Momi N, Batra SK. Pancreatic cancer cells resistance to gemcitabine: the role of MUC4 mucin. Br J Cancer. 2009;101:1155–61.

    Article  PubMed  CAS  Google Scholar 

  14. Komatsu M, Yee L, Carraway KL. Overexpression of sialomucin complex, a rat homologue of MUC4, inhibits tumor killing by lymphokine-activated killer cells. Cancer Res. 1999;59:2229–36.

    PubMed  CAS  Google Scholar 

  15. Hruban RH, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol. 2001;25:79–86.

    Article  Google Scholar 

  16. Nagata K, et al. Mucin expression profile in pancreatic cancer and the precursor lesions. J Hepatobiliary Pancreat Surg. 2007;14:243–54.

    Article  PubMed  Google Scholar 

  17. Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol. 2008;70:431–57.

    Article  PubMed  CAS  Google Scholar 

  18. Thornton DJ, Rousseau K, McGuckin MA. Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol. 2008;70:459–86.

    Article  PubMed  CAS  Google Scholar 

  19. Walch A, et al. Tissue microdissection techniques in quantitative genome and gene expression analyses. Histochem Cell Biol. 2001;115:269–76.

    PubMed  CAS  Google Scholar 

  20. Grützmann R, et al. Gene expression profiling of microdissected pancreatic ductal carcinomas using high-density DNA microarrays. Neoplasia. 2004;6:611–22.

    Article  PubMed  Google Scholar 

  21. Erickson HS, et al. Quantitative RT-PCR gene expression analysis of laser microdissected tissue samples. Nat Protoc. 2009;4:902–22.

    Article  PubMed  CAS  Google Scholar 

  22. Vincent A, Ducourouble MP, Van Seuningen I. Epigenetic regulation of the human mucin gene MUC4 in epithelial cancer cell lines involves both DNA methylation and histone modifications mediated by DNA methyltransferases and histone deacetylases. FASEB J. 2008;22:3035–45.

    Article  PubMed  CAS  Google Scholar 

  23. Yamada N, et al. Promoter CpG methylation in cancer cells contributes to the regulation of MUC4. Br J Cancer. 2009;100:344–51.

    Article  PubMed  CAS  Google Scholar 

  24. Bilimoria KY, et al. Validation of the 6th edition AJCC pancreatic cancer staging system: report from the national cancer database. Cancer. 2007;110:738–44.

    Article  PubMed  Google Scholar 

  25. Hamilton SR, Aaltonen LA. Pathology and genetics of tumours of the digestive system. Lyon: IARC Press; 2000. p. 220–7.

    Google Scholar 

  26. Zhou GB, et al. Modified manual microdissection in procuring defined cells for high-quality RNA acquisition. Chinese J Biochem Mol Biol. 2006;22:252–7.

    CAS  Google Scholar 

  27. Hruban RH, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol. 2001;25:579–86.

    Article  PubMed  CAS  Google Scholar 

  28. Hruban RH, et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol. 2004;28:977–87.

    Article  PubMed  Google Scholar 

  29. Maitra A, et al. Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol. 2003;16:902–12.

    Article  PubMed  Google Scholar 

  30. Hustinx SR, et al. Concordant loss of MTAP and p16/CDKN2A expression in pancreatic intraepithelial neoplasia: evidence of homozygous deletion in a noninvasive precursor lesion. Mod Pathol. 2005;18:959–63.

    Article  PubMed  CAS  Google Scholar 

  31. Fukushima N, et al. Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. Am J Pathol. 2002;160:1573–81.

    Article  PubMed  CAS  Google Scholar 

  32. Hanley J. Receiver operating characteristic (ROC) methodology: the state of the art. Crit Rev Diagn Imaging. 1989;29:307–35.

    PubMed  CAS  Google Scholar 

  33. Spira A, Ettinger DS. Multidisciplinary management of lung cancer. N Engl J Med. 2004;350:379–92.

    Article  PubMed  CAS  Google Scholar 

  34. Zlobec I, Steele R, Terracciano L, Jass JR, Lugli A. Selecting immunohistochemical cut-off scores for novel biomarkers of progression and survival in colorectal cancer. J Clin Pathol. 2007;60:1112–6.

    Article  PubMed  Google Scholar 

  35. Zhang J, et al. Presence of MUC4 in human milk and at the luminal surfaces of blood vessels. J Cell Physiol. 2005;204:166–77.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang J, et al. Transcriptional regulation of human mucin gene MUC4 in pancreatic cancer cells. Mol Biol Rep. 2010;37:2797–802.

    Article  PubMed  CAS  Google Scholar 

  37. Perrais M, et al. Characterization of human mucin gene MUC4 promoter:importance of growth factors and proinflammatory cytokines for its regulation in pancreatic cancer cells. J Biol Chem. 2001;276:30923–33.

    Article  PubMed  CAS  Google Scholar 

  38. Choudhury A, et al. MUC4 mucin expression in human pancreatic tumours is affected by organ environment: the possible role of TGFbeta2. Br J Cancer. 2004;90:657–64.

    Article  PubMed  CAS  Google Scholar 

  39. Andrianifahanana M, et al. Synergistic induction of the MUC4 mucin gene by interferon-gamma and retinoic acid in human pancreatic tumour cells involves a reprogramming of signalling pathways. Oncogene. 2005;24:6143–54.

    Article  PubMed  CAS  Google Scholar 

  40. Mariette C, et al. Transcriptional regulation of human mucin MUC4 by bile acids in oesophageal cancer cells is promoter-dependent and involves activation of the phosphatidylinositol 3-kinase signalling pathway. Biochem J. 2004;377:701–8.

    Article  PubMed  CAS  Google Scholar 

  41. Altman DG, Lausen B, Sauerbrei W, Schumacher M. Dangers of using ‘optimal’ cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst. 1994;86:829–35.

    Article  PubMed  CAS  Google Scholar 

  42. Kyzas PA, Denaxa-Kyza D, Ioannidis JP. Almost all articles on cancer prognostic markers report statistically significant results. Eur J Cancer. 2007;43:2559–79.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30872509). We are grateful to Zhou XP, Qian ZY, Dai CC, Jiang KR, Wu JL, Guo F, Chen JM, Wei JS, Lu ZP, Du Q (First Affiliated Hospital of Nanjing Medical University) for meticulous guidance on the statistical analysis and kind help on the collection of tissue specimens.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ze-kuan Xu or Yi Miao.

Additional information

Yi Zhu, Jing-jing Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Zhang, Jj., Zhu, R. et al. The increase in the expression and hypomethylation of MUC4 gene with the progression of pancreatic ductal adenocarcinoma. Med Oncol 28 (Suppl 1), 175–184 (2011). https://doi.org/10.1007/s12032-010-9683-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-010-9683-0

Keywords

Navigation