Skip to main content

Advertisement

Log in

Multifaceted preventive effects of single agent quercetin on a human prostate adenocarcinoma cell line (PC-3): implications for nutritional transcriptomics and multi-target therapy

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The aim of the present study is to evaluate the effects of quercetin, a dietary flavonoid, on human prostate adenocarcinoma PC-3 cells. Lactate dehydrogenase (LDH) release, microculture tetrazolium test (MTT assay) and real-time PCR array were employed to evaluate the effects of quercetin on cell cytotoxicity, cell proliferation and expression of various genes in PC-3 cell line. Quercetin inhibited cell proliferation and modulated the expression of genes involved in DNA repair, matrix degradation and tumor invasion, angiogenesis, apoptosis, cell cycle, metabolism and glycolysis. No cytotoxicity of quercetin on PC-3 cells was observed. Taken together, as shown by the issues of the current study, the manifold inhibitory effects of quercetin on PC-3 cells may introduce quercetin as an efficacious anticancer agent in order to be used in the future nutritional transcriptomic investigations and multi-target therapy to overcome the therapeutic impediments against prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:67–125.

    Article  Google Scholar 

  2. Nelson WG, De Marzo AM, Isaacs WB. Mechanisms of disease: prostate cancer. New Eng J Med. 2003;349:366–81.

    Article  PubMed  CAS  Google Scholar 

  3. Deutsch E, Maggiorella L, Eschwege P, Bourhis J, Soria J, et al. Environmental, genetic, and molecular features of prostate cancer. Lancet Oncol. 2004;5:303–13.

    Article  PubMed  CAS  Google Scholar 

  4. Porkka K, Visakorpi T. Molecular mechanisms of prostate cancer. Eur Urol. 2004;45:683–91.

    Article  PubMed  CAS  Google Scholar 

  5. Grönberg H. Prostate cancer epidemiology. Lancet. 2003;361:859–64.

    Article  PubMed  Google Scholar 

  6. Muir CS, Nectoux J, Staszewski J. The epidemiology of prostatic cancer. Geographical distribution and time-trends. Acta Oncol. 1991;30:133–40.

    Article  PubMed  CAS  Google Scholar 

  7. Shimizu H, Ross RK, Bernstein L, Yatani R, Henderson BE, Mack TM. Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County. Br J Cancer. 1991;63:963–9.

    Article  PubMed  CAS  Google Scholar 

  8. Neuhouser ML. Dietary flavonoids and cancer risk: evidence from human population studies. Nutr Cancer. 2004;50:1–7.

    Article  PubMed  CAS  Google Scholar 

  9. Craig WJ. Phytochemicals: guardians of our health. J Am Diet Assoc. 1997;97:S199–204.

    Article  PubMed  CAS  Google Scholar 

  10. Adlercreutz H, Mazur W, Bartels P, Elomaa VV, Watanabe S, et al. Phytoestrogens and prostate disease. J Nutr. 2000;130:658S–9S.

    PubMed  CAS  Google Scholar 

  11. Lampe J. Isoflavonoid and lignan phytoestrogens as dietary biomarkers. J Nutr. 2003;133:956S–64S.

    PubMed  CAS  Google Scholar 

  12. Aherne SA, O’Brien NM. Dietary flavonols: chemistry, food content, and metabolism. Nutrition. 2002;18:75–81.

    Article  PubMed  CAS  Google Scholar 

  13. Hertog MG, Hollman PC, Katan MB. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in The Netherlands. J Agric Food Chem. 1992;40:2379–83.

    Article  CAS  Google Scholar 

  14. Haddad AQ, Venkateswaran V, Viswanathan L, Teahan SJ, Fleshner NE, et al. Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines. Prostate Cancer Prostatic Dis. 2006;9:68–76.

    Article  PubMed  CAS  Google Scholar 

  15. Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, et al. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr. 2002;76:560–8.

    PubMed  CAS  Google Scholar 

  16. Garcia-Closas R, Agudo A, Gonzalez CA, Riboli E. Intake of specific carotenoids and flavonoids and the risk of lung cancer in women in Barcelona, Spain. Nutr Cancer. 1998;32:154–8.

    Article  PubMed  CAS  Google Scholar 

  17. De Stefani E, Boffetta P, Deneo-Pellegrini H, Mendilaharsu M, Carzoglio JC, et al. Dietary antioxidants and lung cancer risk: a case-control study in Uruguay. Nutr Cancer. 1999;34:100–10.

    Article  PubMed  CAS  Google Scholar 

  18. Garcia R, Gonzalez CA, Agudo A, Riboli E. High intake of specific carotenoids and flavonoids does not reduce the risk of bladder cancer. Nutr Cancer. 1999;35:212–4.

    Article  PubMed  CAS  Google Scholar 

  19. Garcia-Closas R, Gonzalez CA, Agudo A, Riboli E. Intake of specific carotenoids and flavonoids and the risk of gastric cancer in Spain. Cancer Causes Control. 1999;10:71–5.

    Article  PubMed  CAS  Google Scholar 

  20. Le Marchand L, Murphy SP, Hankin JH, Wilkens LR, Kolonel LN. Intake of flavonoids and lung cancer. JNCI. 2000;92:154–60.

    Article  PubMed  CAS  Google Scholar 

  21. Peterson J, Lagiou P, Samoli E, Lagiou A, Katsouyanni K, et al. Flavonoid intake and breast cancer risk: a case-control study in Greece. Br J Cancer. 2003;89:1255–9.

    Article  PubMed  CAS  Google Scholar 

  22. Xing N, Chen Y, Mitchell SH, Young CY. Quercetin inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Carcinogenesis. 2001;22:409–14.

    Article  PubMed  CAS  Google Scholar 

  23. Nair HK, Rao KV, Aalinkeel R, Mahajan S, Chawda R, et al. Inhibition of prostate cancer cell colony formation by the flavonoid quercetin correlates with modulation of specific regulatory genes. Clin Diagn Lab Immunol. 2004;11:63–9.

    PubMed  CAS  Google Scholar 

  24. Vijayababu MR, Kanagaraj P, Arunkumar A, Ilangovan R, Dharmarajan A, et al. Quercetin induces p53-independent apoptosis in human prostate cancer cells by modulating Bcl-2-related proteins: a possible mediation by IGFBP-3. Oncol Res. 2006;16:67–74.

    PubMed  CAS  Google Scholar 

  25. Vijayababu MR, Arunkumar A, Kanagaraj P, Venkataraman P, Krishnamoorthy G, et al. Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3). Mol Cell Biochem. 2006;287:109–16.

    Article  PubMed  CAS  Google Scholar 

  26. Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem. 2005;280:5636–45.

    Article  PubMed  CAS  Google Scholar 

  27. Shenouda NS, Zhou C, Browning JD, Ansell PJ, Sakla MS, et al. Phytoestrogens in common herbs regulate prostate cancer cell growth in vitro. Nutr Cancer. 2004;49:200–8.

    Article  PubMed  CAS  Google Scholar 

  28. Morris J, Pramanik R, Zhang X, Carey A, Ragavan N, et al. Selenium- or quercetin-induced retardation of DNA synthesis in primary prostate cells occurs in the presence of a concomitant reduction in androgen-receptor activity. Cancer Lett. 2006;239:111–22.

    Article  PubMed  CAS  Google Scholar 

  29. Mutch DM, Wahli W, Williamson G. Nutrigenomics and nutrigenetics. The emerging faces of nutrition. FASEB J. 2005;19:1602–16.

    Article  PubMed  CAS  Google Scholar 

  30. Muller M, Kersten S. Nutrigenomics: goals and strategies. Nat Rev Cancer. 2003;4:315–22.

    Article  Google Scholar 

  31. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8:180–92.

    Article  Google Scholar 

  32. Hakomi S. Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 1996;56:5309–18.

    Google Scholar 

  33. Vlodavski L, Goldshmidta O, Zchariaa E, Metzgerb S, Chajek-Shaulb T, et al. Molecular properties and involvement of heparanase in cancer progression and normal development. Biochimie. 2001;83:831–9.

    Article  Google Scholar 

  34. Jiang X, Couchman JR. Perlecan and tumor angiogenesis. J Histochem Cytochem. 2003;51:1393–410.

    Article  PubMed  CAS  Google Scholar 

  35. Liu YY, Han T, Giuliano AE, Cabot MC. Ceramide glycosylation potentiates cellular multidrug resistance. FASEB J. 2001;15:719–30.

    Article  PubMed  CAS  Google Scholar 

  36. Payne SG, Milstien S, Spiegel S. Sphingosine-1-phosphate: dual messenger functions. FEBS Lett. 2003;531:54–7.

    Article  Google Scholar 

  37. Santana P, Pen LA, Haimovitz-Friedman A, Martin S, Green D, et al. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell. 1996;86:189–99.

    Article  PubMed  CAS  Google Scholar 

  38. Brusselmans K, De Schrijver E, Verhoeven G, Swinnen JV. RNA interference-mediated silencing of the acetyl-CoA carboxylase-α gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res. 2005;65:6719–25.

    Article  PubMed  CAS  Google Scholar 

  39. Priolo C, Tang D, Brahamandan M, Benassi B, Sicinska E, et al. The isopeptidase USP2a protects human prostate cancer from apoptosis. Cancer Res. 2006;66:8625–32.

    Article  PubMed  CAS  Google Scholar 

  40. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.

    Article  PubMed  CAS  Google Scholar 

  41. Hatzivassiliou G, Zhao F, Bauer D, Andreadis C, Shaw A, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell. 2005;8:311–21.

    Article  PubMed  CAS  Google Scholar 

  42. Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7:763–77.

    Article  PubMed  CAS  Google Scholar 

  43. Berezovskaya O, Schimmer AD, Glinskii AB, Pinilla C, Hoffman RM, et al. Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate cancer metastasis precursor cells. Cancer Res. 2005;65:2378–86.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang M, Latham DE, Delaney MA, Chakravarti A. Survivin mediates resistance to antiandrogen therapy in prostate cancer. Oncogene. 2005;24:2474–82.

    Article  PubMed  CAS  Google Scholar 

  45. O’Kane H, Watson C, Johnston S, Petak I, William R, et al. Targeting death receptors in bladder, prostate and renal cancer. J Urol. 2006;175:432–8.

    Article  PubMed  Google Scholar 

  46. Catz SD, Johnson JL. BCL-2 in prostate cancer: a minireview. Apoptosis. 2004;8:29–37.

    Article  Google Scholar 

  47. Abe M, Manola JB, Oh WK, Parslow DL, George DJ, et al. Plasma levels of heat shock protein 70 in patients with prostate cancer: a potential biomarker for prostate cancer. Clin Prostate Cancer. 2004;3:49–53.

    PubMed  CAS  Google Scholar 

  48. Isaacs J, Xu W, Neckers L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell. 2003;3:213–7.

    Article  PubMed  CAS  Google Scholar 

  49. Xia G, Kumar SR, Masood R, Zhu S, Reddy R, et al. EphB4 expression and biological significance in prostate cancer. Cancer Res. 2005;65:4623–32.

    Article  PubMed  CAS  Google Scholar 

  50. Nicholson B, Teodorescu D. Angiogenesis and prostate cancer tumor growth. J Cell Biochem. 2003;91:125–50.

    Article  Google Scholar 

  51. Lawrence YR, Dicker AP. Hypoxia in prostate cancer: observation to intervention. Lancet Oncol. 2008;9:308–9.

    Article  PubMed  Google Scholar 

  52. Morey SR, Smiraglia DJ, James SR, Yu J, Moser MT. DNA methylation pathway alterations in an autochthonous murine model of prostate cancer. Cancer Res. 2006;66:11659–67.

    Article  PubMed  CAS  Google Scholar 

  53. Halkidou K. Nuclear accumulation of histone deacetylase 4 (HDAC4) coincides with the loss of androgen sensitivity in hormone refractory cancer of the prostate. Euro Urol. 2005;45:382–9.

    Article  Google Scholar 

  54. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002;62:1832–7.

    PubMed  CAS  Google Scholar 

  55. Yu G, Tseng GC, Yu YP, Gavel T, Nelson J. CSR1 suppresses tumor growth and metastasis of prostate cancer. Am J Pathol. 2006;168:597–607.

    Article  PubMed  CAS  Google Scholar 

  56. Jaeger EB, Samant RS, Rinker-Schaeffer CW. Metastasis suppression in prostate cancer. Cancer Metastasis Rev. 2004;20:279–86.

    Article  Google Scholar 

  57. Khodavirdi AC, Song Z, Yang S, Zhong C, Wang S, et al. Increased expression of osteopontin contributes to the progression of prostate cancer. Cancer Res. 2006;66:883–8.

    Article  PubMed  CAS  Google Scholar 

  58. Chesire DR, Isaacs WB. Beta-catenin signaling in prostate cancer: an early perspective. Endocr Relat Cancer. 2003;10:537–60.

    Article  PubMed  CAS  Google Scholar 

  59. Cardone RA, Casavola V, Reshkin SJ. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer. 2005;5:786–95.

    Article  PubMed  CAS  Google Scholar 

  60. Drobnjak M, Osman I, Scher HI, Fazzari M, Cordon-Cardo C. Overexpression of cyclin D1 is associated with metastatic prostate cancer to bone. Clin Cancer Res. 2000;6:1891–5.

    PubMed  CAS  Google Scholar 

  61. Uotila P, Valve E, Martikainen P, Nevalainen M, Nurmi M. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol Res. 2001;29:25–8.

    Article  CAS  Google Scholar 

  62. Lloyd MD, Darley DJ, Wierzbicki AS, Threadgill MD. Alpha-methylacyl-CoA racemase—an ‘obscure’ metabolic enzyme takes centre stage. FEBS J. 2008;44:1089–102.

    Article  Google Scholar 

  63. Russell PJ, Bennett S, Stricker P. Growth factor involvement in progression of prostate cancer. Clin Chem. 1998;44:705–23.

    PubMed  CAS  Google Scholar 

  64. Wei RR, Al-Bassam J, Harrison SC. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat Struct Mol Biol. 2007;14:54–9.

    Article  PubMed  CAS  Google Scholar 

  65. Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumor suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer. 2007;8:83–93.

    Article  Google Scholar 

  66. Floryk D, Tollaksen SL, Giometti CS, Huberman E. Differentiation of human prostate cancer PC-3 cells induced by inhibitors of inosine 5′-monophosphate dehydrogenase. Cancer Res. 2004;64:9049–56.

    Article  PubMed  CAS  Google Scholar 

  67. Hughes C, Murphy A, Martin C, Sheils O, O’Leary J. Molecular pathology of prostate cancer. J Clin Pathol. 2005;58:673–84.

    Article  PubMed  CAS  Google Scholar 

  68. Meyera H, Ahrens-Fathb I, Sommera A, Haendler B. Novel molecular aspects of prostate carcinogenesis. Biomed Pharmacother. 2004;58:10–6.

    Article  Google Scholar 

  69. Ren W, Qiao Z, Wang H, Zhu L, Zhang L. Flavonoids: promising anticancer agents. Med Res Rev. 2003;23:519–34.

    Article  PubMed  CAS  Google Scholar 

  70. Kioka N, Hosokawa N, Komano T, Hirayoshi K, Nagata K, et al. Quercetin, a bioflavonoid, inhibits the increase of human multidrug resistance gene (MDR1) expression caused by arsenite. FEBS Lett. 1992;301:307–9.

    Article  PubMed  CAS  Google Scholar 

  71. Igura K, Ohta T, Kuroda Y, Kaji K. Resveratrol and quercetin inhibit angiogenesis in vitro. Cancer Lett. 2001;171:11–6.

    Article  PubMed  CAS  Google Scholar 

  72. Romero I, Páez A, Ferruelo A, Luján M, Berenguer A. Polyphenols in red wine inhibit the proliferation and induce apoptosis of LNCaP cells. BJU Inter. 2002;89:950–4.

    Article  CAS  Google Scholar 

  73. Kobayashi T, Nakata T, Kuzumaki T. Effect of flavonoids on cell cycle progression in prostate cancer cells. Cancer Lett. 2002;176:17–23.

    Article  PubMed  CAS  Google Scholar 

  74. Lambert JD, Hong J, Yang G, Liao J, Yang CS. Inhibition of carcinogenesis by polyphenols: evidence from laboratory investigations. Am J Clin Nutr. 2005;81:284S–91S.

    PubMed  CAS  Google Scholar 

  75. Murota K, Hotta A, Ido H, Kawai Y, Moon J, et al. Antioxidant capacity of albumin-bound quercetin metabolites after onion consumption in humans. J Med Invest. 2007;54:370–4.

    Article  PubMed  Google Scholar 

  76. Dihal A, Woutersen R, Ommen B, Rietjens I, Stierum R. Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2. Cancer Lett. 2006;238:248–59.

    Article  PubMed  CAS  Google Scholar 

  77. Okamoto T. Safety of quercetin for clinical application (review). Int J Mol Med. 2005;16:275–8.

    PubMed  CAS  Google Scholar 

  78. Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, et al. ABT-888, an orally active poly(ADP-Ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res. 2007;13:2728–37.

    Article  PubMed  CAS  Google Scholar 

  79. Kelley MR, Fishel ML. DNA repair proteins as molecular targets for cancer therapeutics. Anti-Cancer Agents Med Chem. 2008;8:417–25.

    CAS  Google Scholar 

  80. Blunt T, Finnie NJ, Taccioli GE, Smith GC, Demengeot J, et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell. 1995;80:813–23.

    Article  PubMed  CAS  Google Scholar 

  81. Fuster MM, Esko JD. The sweet and sour of cancer: Glycans as novel therapeutic targets. Nat Cancer Rev. 2005;5:526–42.

    Article  CAS  Google Scholar 

  82. Yoshimura M, Ihara Y, Matsuzawa Y, Taniguchi N. Aberrant glycosylation of E-cadherin enhances cell-cell binding to suppress metastasis. J Biol Chem. 1996;271:13811–5.

    Article  PubMed  CAS  Google Scholar 

  83. Adatia R, Albini A, Carlone S, Giunciuglio D, Benelli R, et al. Suppression of invasive behavior of melanoma cells by stable expression of anti-sense perlecan cDNA. Ann Oncol. 1997;8:1257–61.

    Article  PubMed  CAS  Google Scholar 

  84. Zcharia E, Metzger S, Chajek-Shaul T, Friedmann Y, Pappo O, et al. Molecular properties and involvement of heparanase in cancer progression and mammary gland morphogenesis. J Mammary Gland Biol Neoplasia. 2001;6:311–22.

    Article  PubMed  CAS  Google Scholar 

  85. Ogretmen B, Hannun YA. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer. 2004;4:604–16.

    Article  PubMed  CAS  Google Scholar 

  86. Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science. 1996;274:1855–9.

    Article  PubMed  CAS  Google Scholar 

  87. Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB. ATP citrate lyase is an important component of cell growth and transformation. Oncogene. 2005;24:6314–22.

    Article  PubMed  CAS  Google Scholar 

  88. Graner E, Tang D, Rossi S, Baron A, Migita T, et al. The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell. 2004;5:253–61.

    Article  PubMed  CAS  Google Scholar 

  89. Chen L, Pankiewicz KW. Recent development of IMP dehydrogenase inhibitors for the treatment of cancer. Curr Opin Drug Discov Dev. 2007;10:403–12.

    CAS  Google Scholar 

  90. Zimmermann GR, Lehár J, Keith CT. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today. 2007;12:34–42.

    Article  PubMed  CAS  Google Scholar 

  91. Altieri DC. Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer. 2008;8:61–70.

    Article  PubMed  CAS  Google Scholar 

  92. Davis CD, Milner J. Frontiers in nutrigenomics, proteomics, metabolomics and cancer prevention. Mut Res. 2004;551:51–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The technical assistance of Yassan Abdolazimi is gratefully acknowledged. This work was supported by a grant from Tehran University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad R. Noori-Daloii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noori-Daloii, M.R., Momeny, M., Yousefi, M. et al. Multifaceted preventive effects of single agent quercetin on a human prostate adenocarcinoma cell line (PC-3): implications for nutritional transcriptomics and multi-target therapy. Med Oncol 28, 1395–1404 (2011). https://doi.org/10.1007/s12032-010-9603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-010-9603-3

Keywords

Navigation