Skip to main content

Advertisement

Log in

Understanding the Molecular Regulation of Serotonin Receptor 5-HTR1B-β-Arrestin1 Complex in Stress and Anxiety Disorders

  • Research
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The serotonin receptor subtype 5-HTR1B is widely distributed in the brain with an important role in various behavioral implications including neurological conditions and psychiatric disorders. The neuromodulatory action of 5-HTR1B largely depends upon its arrestin mediated signaling pathway. In this study, we tried to investigate the role of unusually long intracellular loop 3 (ICL3) region of the serotonin receptor 5-HTR1B in interaction with β-arrestin1 (Arr2) to compensate for the absence of the long cytoplasmic tail. Molecular modeling and docking tools were employed to obtain a suitable molecular conformation of the ICL3 region in complex with Arr2 which dictates the specific complex formation of 5-HTR1B with Arr2. This reveals the novel molecular mechanism of phosphorylated ICL3 mediated GPCR-arrestin interaction in the absence of the long cytoplasmic tail. The in-cell disulfide cross-linking experiments and molecular dynamics simulations of the complex further validate the model of 5-HTR1B-ICL3-Arr2 complex. Two serine residues (Ser281 and Ser295) within the 5-HTR1B-ICL3 region were found to be occupying the electropositive pocket of Arr2 in our model and might be crucial for phosphorylation and specific Arr2 binding. The alignment studies of these residues showed them to be conserved only across 5-HTR1B mammalian species. Thus, our studies were able to predict a molecular conformation of 5-HTR1B-Arr2 and identify the role of long ICL3 in the signaling process which might be crucial in designing targeted drugs (biased agonists) that promote GPCR-Arr2 signaling to deter the effects of stress and anxiety-like disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The supporting data for this study is present in the supplementary file of the manuscript.

References

  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  • Avissar S, Matuzany-Ruban A, Tzukert K, Schreiber G (2004) Article β-arrestin-1 levels: reduced in leukocytes of patients with depression and elevated by antidepressants in rat brain. In Am J Psychiatry 161(11). http://ajp.psychiatryonline.org

  • Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Dustin Schaeffer R, Millán C, Park H, Adams C, Glassman CR, DeGiovanni A, Pereira JH, Rodrigues AV, Van Dijk AA, Ebrecht AC, Baker D (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science (New York, N.Y.), 373(6557):871–876. https://doi.org/10.1126/SCIENCE.ABJ8754

  • Ballou Y, Rivas A, Belmont A, Patel L, Amaya C, Lipson S, Khayou T, Dickerson E, Nahleh Z, Bryan B (2018) 5-HT serotonin receptors modulate mitogenic signaling and impact tumor cell viability. Mol Clin Oncol 9(3). https://doi.org/10.3892/MCO.2018.1681

  • Beaulieu JM, Gainetdinov RR, Caron MG (2009) Akt/GSK3 signaling in the action of psychotropic drugs. In Annual Review of Pharmacology and Toxicology 49:327–347. https://doi.org/10.1146/annurev.pharmtox.011008.145634

    Article  CAS  Google Scholar 

  • Bekker H, Berendsen Herman J C, Dijkstra EJ, Achterop S, Drunen Rudi van, Spoel David van der, Sijbers A, Keegstra H, Renardus MKR (1993) GROMACS - a parallel computer for molecular-dynamics simulations. 252–256

  • Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. In Annual Review of Medicine 60:355–366. https://doi.org/10.1146/annurev.med.60.042307.110802

    Article  CAS  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. http://www.cbs.dtu.dk/services/NetPhos/orviae-mailtoNetPhos@cbs.dtu.dk.

  • Bondy B (2002) Pathophysiology of depression and mechanisms of treatment. 4(1)

  • Chen CW, Huang LY, Liao CF, Chang KP, Chu YW (2020) GasPhos: protein phosphorylation site prediction using a new feature selection approach with a GA-aided ant colony system. Int J Mol Sci 21(21):1–16. https://doi.org/10.3390/ijms21217891

    Article  CAS  Google Scholar 

  • Chen M, Zhang W, Gou Y, Xu D, Wei Y, Liu D, Han C, Huang X, Li C, Ning W, Peng D, Xue Y (2023) GPS 6.0: an updated server for prediction of kinase-specific phosphorylation sites in proteins. Abstr Nucl Acids Res 51(W1):W243–W250. https://doi.org/10.1093/nar/gkad383

    Article  Google Scholar 

  • Colovos C, TO Y (1993) Verification of protein structures: patterns of nonbonded atomic interactions. 1511–1519

  • DeLano WL (2002) Pymol: an open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr 40(1):82–92

    Google Scholar 

  • Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737. https://doi.org/10.1021/ja026939x

    Article  CAS  PubMed  Google Scholar 

  • Dou Y, Yao B, Zhang C (2014) PhosphoSVM: prediction of phosphorylation sites by integrating various protein sequence attributes with a support vector machine. Amino Acids 46(6):1459–1469. https://doi.org/10.1007/s00726-014-1711-5

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Sanders AR, Molen JEV, Martinolich L, Mowry BJ, Levinson DF, Crowe RR, Silverman JM, Gejman PV (2003) Polymorphisms in the 5′-untranslated region of the human serotonin receptor 1B (HTR1B) gene affect gene expression. Mol Psychiatry 8(11):901–910. https://doi.org/10.1038/sj.mp.4001403

    Article  CAS  PubMed  Google Scholar 

  • Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient unbound docking of rigid molecules. In International Workshop on Algorithms in Bioinformatics. 185–200

  • Eichel K, von Zastrow M (2018) Subcellular organization of GPCR signaling. In Trends in Pharmacological Sciences 39(2):200–208. Elsevier Ltd. https://doi.org/10.1016/j.tips.2017.11.009

  • Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA (2004) Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat Genet 36(2):131–137. https://doi.org/10.1038/ng1296

    Article  CAS  PubMed  Google Scholar 

  • Ferrari MD, Saxena PR (1993) On serotonin and migraine: a clinical and pharmacological review. Cephalalgia 151–165

  • Furay AR, McDevitt RA, Miczek KA, Neumaier JF (2011) 5-HT1B mRNA expression after chronic social stress. Behav Brain Res 224(2):350–357. https://doi.org/10.1016/j.bbr.2011.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Nafría J, Nehmé R, Edwards PC, Tate CG (2018) Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go. Nature 620–623

  • Ghosh E, Kumari P, Jaiman D, Shukla AK (2015) Methodological advances: the unsung heroes of the GPCR structural revolution. In Nature Reviews Molecular Cell Biology 16(2):69–81. Nature Publishing Group. https://doi.org/10.1038/nrm3933

  • Głuch-Lutwin M, Sałaciak K, Gawalska A, Jamrozik M, Sniecikowska J, Newman-Tancredi A, Kołaczkowski M, Pytka K (2021) The selective 5-HT1A receptor biased agonists, F15599 and F13714, show antidepressant-like properties after a single administration in the mouse model of unpredictable chronic mild stress. Psychopharmacology 238(8):2249–2260. https://doi.org/10.1007/S00213-021-05849-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Głuch-Lutwin M, Sałaciak K, Pytka K, Gawalska A, Jamrozik M, Śniecikowska J, Kołaczkowski M, Depoortère RY, Newman-Tancredi A (2023) The 5-HT1A receptor biased agonist, NLX-204, shows rapid-acting antidepressant-like properties and neurochemical changes in two mouse models of depression. Behav Brain Res 438. https://doi.org/10.1016/J.BBR.2022.114207

  • Goadsby PJ, Hoskin KL (1998) Serotonin inhibits trigeminal nucleus activity evoked by craniovascular stimulation through a 5HT(1B/1D) receptor: A central action in migraine? Ann Neurol 43(6):711–718. https://doi.org/10.1002/ana.410430605

    Article  CAS  PubMed  Google Scholar 

  • Gondora N (2020) GPCR and RTK regulation in neurons: the impact of stress on GPCR and RTK signalling and crosstalk

  • Goodman LS (2017) The pharmacological basis of therapeutics thirteenth edition

  • Gouet P, Courcelle E, Stuart DI, Métoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. http://www.ipbs.fr/ESPript.

  • Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30(SUPPL. 1). https://doi.org/10.1002/elps.200900140

  • Guo F, Li SC, Wang L, Zhu D (2012) Protein-protein binding site identification by enumerating the configurations

  • Gurevich VV, Gurevich EV (2019) GPCR signaling regulation: the role of GRKs and arrestins. Front Pharm 10(FEB). https://doi.org/10.3389/fphar.2019.00125

  • Hakulinen C, Jokela M, Hintsanen M, Merjonen P, Pulkki-Råback L, Seppälä I, Lyytikäinen LP, Lehtimäki T, Kähönen M, Viikari J, Raitakari OT, Keltikangas-Järvinen L (2013) Serotonin receptor 1B genotype and hostility, anger and aggressive behavior through the lifespan: the Young Finns study. J Behav Med 36(6):583–590. https://doi.org/10.1007/s10865-012-9452-y

    Article  PubMed  Google Scholar 

  • Hara MR, Sachs BD, Caron MG, Lefkowitz RJ (2013) Pharmacological blockade of a β2AR-β-arrestin-1 signaling cascade prevents the accumulation of DNA damage in a behavioral stress model. Cell Cycle 12(2):219–224. https://doi.org/10.4161/cc.23368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hargreaves R (2007) New migraine and pain research. Headache 47(SUPPL. 1). https://doi.org/10.1111/j.1526-4610.2006.00675.x

  • He QT, Xiao P, Huang SM, Jia YL, Zhu ZL, Lin JY, Yang F, Tao XN, Zhao RJ, Gao FY, Niu XG, Xiao KH, Wang J, Jin C, Sun JP, Yu X (2021) Structural studies of phosphorylation-dependent interactions between the V2R receptor and arrestin-2. Nat Commun 12(1). https://doi.org/10.1038/s41467-021-22731-x

  • Hilger D, Masureel M, Kobilka BK (2018) Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol 25(1):4–12. https://doi.org/10.1038/s41594-017-0011-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Masureel M, Qu Q, Janetzko J, Inoue A, Kato HE, Robertson MJ, Nguyen KC, Glenn JS, Skiniotis G, Kobilka BK (2020) Structure of the neurotensin receptor 1 in complex with β-arrestin 1. Nature 579(7798):303–308. https://doi.org/10.1038/s41586-020-1953-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  • Jamroz M, Kolinski A, Kmiecik S (2013) CABS-flex: server for fast simulation of protein structure fluctuations. Nucleic Acids Res 41. (Web Server issue). https://doi.org/10.1093/nar/gkt332

  • Jamroz M, Kolinski A, Kmiecik S (2014) CABS-flex predictions of protein flexibility compared with NMR ensembles. Bioinformatics 30(15):2150–2154. https://doi.org/10.1093/bioinformatics/btu184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimé Nez-García B, Pons C, Ferná Ndez-Recio J (2013) Structural Bioinformatics pyDockWEB: a Web Server for Rigid-Body Protein-Protein Docking Using Electrostatics and Desolvation Scoring 29(13):1698–1699. https://doi.org/10.1093/bioinformatics/btt262

    Article  CAS  Google Scholar 

  • Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, De Waal PW, Ke J, Tan MHE, Zhang C, Moeller A, West GM, Pascal BD, Van Eps N, Xu HE (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523(7562):561–567. https://doi.org/10.1038/NATURE14656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G-protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 531–556. https://doi.org/10.1146/annurev-pharmtox-032112-135923

  • Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32. (WEB SERVER ISS.). https://doi.org/10.1093/nar/gkh468

  • Köse M (2017) GPCRs and EGFR – Cross-talk of membrane receptors in cancer. In Bioorganic and Medicinal Chemistry Letters. 27(16):3611–3620. Elsevier Ltd. https://doi.org/10.1016/j.bmcl.2017.07.002

  • Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein–protein docking. Nature Protocols 12(2):255–278. https://doi.org/10.1038/nprot.2016.169

  • Kurcinski M, Oleniecki T, Ciemny MP, Kuriata A, Kolinski A, Kmiecik S (2019) CABS-flex standalone: a simulation environment for fast modeling of protein flexibility. Bioinformatics0694–695–0. https://doi.org/10.1093/bioinformatics/xxxxx

  • Kuriata A, Gierut AM, Oleniecki T, Ciemny MP, Kolinski A, Kurcinski M, Kmiecik S (2018) CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures. Nucleic Acids Res 46(W1):W338–W343. https://doi.org/10.1093/nar/gky356

  • Lefkowitz RJ (2007) Seven transmembrane receptors: something old, something new. https://doi.org/10.1111/j.1748-1716.2007.01693.x

  • Li SH, Zhang J, Zhao YW, Dao FY, Ding H, Chen W, Tang H (2019) IPhoPred: a predictor for identifying phosphorylation sites in human protein. IEEE Access 7:177517–177528. https://doi.org/10.1109/ACCESS.2019.2953951

    Article  Google Scholar 

  • Liu Y (2014) 5-HT1B autoreceptors: molecular mechanisms and behavioral implications (Doctoral dissertation)

    Google Scholar 

  • López-Figueroa AL, Norton CS, López-Figueroa MO, Armellini-Dodel D, Burke S, Akil H, López JF, Watson SJ (2004) Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol Psychiat 55(3):225–233. https://doi.org/10.1016/j.biopsych.2003.09.017

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Chakrabarty D, Bhattacharya A, Paul J, Haldar S, Pal K (2021) miRNA regulation of G protein-coupled receptor mediated angiogenic pathways in cancer. Nucleus 64(3):303–315. https://doi.org/10.1007/s13237-021-00365-0

    Article  CAS  Google Scholar 

  • McCorvy JD, Roth BL (2015) Structure and function of serotonin G protein-coupled receptors. In Pharmacology and Therapeutics. 150:129–142. Elsevier Inc. https://doi.org/10.1016/j.pharmthera.2015.01.009

  • Mekli K, Payton A, Miyajima F, Platt H, Thomas E, Downey D, Lloyd-Williams K, Chase D, Toth ZG, Elliott R, Ollier WE, Anderson IM, Deakin JFW, Bagdy G, Juhasz G (2011) The HTR1A and HTR1B receptor genes influence stress-related information processing. Eur Neuropsychopharmacol 21(1):129–139. https://doi.org/10.1016/j.euroneuro.2010.06.013

    Article  CAS  PubMed  Google Scholar 

  • Mendez-David I, El-Ali Z, Hen R, Falissard B, Corruble E, Gardier AM, Kerdine-Römer S, David DJ (2013) A method for biomarker measurements in peripheral blood mononuclear cells isolated from anxious and depressed mice: β-arrestin 1 protein levels in depression and treatment. Front Pharmacol 4. SEP. https://doi.org/10.3389/fphar.2013.00124

  • Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM (2008) Serotonin: a review. In Journal of Veterinary Pharmacology and Therapeutics. 31:187–199. https://doi.org/10.1111/j.1365-2885.2008.00944.x

  • Moret C, Briley M, Francè´ F (2000) The possible role of 5-HT receptors in psychiatric disorders and their potential as a target for therapy. In European Journal of Pharmacology. 404. http://www.elsevier.nlrlocaterejphar

  • Morris AL, Macarthur MW, Hutchinson EG, Thornton’ JM (1992).Stereochemical quality of protein structure coordinates. In PROTEINS: Structure, Function, and Genetics. 12

  • Moul C, Dobson-Stone C, Brennan J, Hawes DJ, Dadds MR (2015) Serotonin 1B receptor gene (HTR1B) methylation as a risk factor for callous-unemotional traits in antisocial boys. PLoS One 10(5). https://doi.org/10.1371/journal.pone.0126903

  • Nautiyal KM, Tanaka KF, Barr MM, Tritschler L, Le Dantec Y, David DJ, Gardier AM, Blanco C, Hen R, Ahmari SE (2015) Distinct circuits underlie the effects of 5-HT1B receptors on aggression and impulsivity. Neuron 86(3):813–826. https://doi.org/10.1016/j.neuron.2015.03.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nebigil CG, Launay JM, Hickel P, Tournois C, Maroteaux L (2000) 5-Hydroxytryptamine 2B receptor regulates cell-cycle progression: cross-talk with tyrosine kinase pathways Cell biology. In PNAS March 14(6). https://www.pnas.orgcgi/doi/10.1073pnas.050282397

  • Pal K, Melcher K, Xu HE (2013) Structure modeling using genetically engineered crosslinking. Cell 155(6):1207–1208. https://doi.org/10.1016/J.CELL.2013.11.018

    Article  CAS  PubMed  Google Scholar 

  • Park SM, Chen M, Schmerberg CM, Dulman RS, Rodriguiz RM, Caron MG, Jin J, Wetsel WC (2016) Effects of β-arrestin-biased dopamine D2 receptor ligands on schizophrenia-like behavior in hypoglutamatergic mice. Neuropsychopharmacology 41(3):704–715. https://doi.org/10.1038/npp.2015.196

    Article  CAS  PubMed  Google Scholar 

  • Pierce BG, Wiehe K, Hwang H, Kim B-H, Vreven T, Weng Z (2014) Structural Bioinformatics ZDOCK Server: Interactive Docking Prediction of Protein-Protein Complexes and Symmetric Multimers 30(12):1771–1773. https://doi.org/10.1093/bioinformatics/btu097

    Article  CAS  Google Scholar 

  • Prenzel N, Zwick E, Leserer M, Ullrich A (2000) Tyrosine kinase signalling in breast cancer Epidermal growth factor receptor: convergence point for signal integration and diversification. In Breast Cancer Research. 2. http://breast-cancer-research.com/content/2/3/184

  • Ramboz S, Saudou ric, Mt Amara D, Belzung C, Segu L, Buhot MC (1996) 5-HT18 receptor knock out-behavioral consequences. In Behavioural Brain Research. 73

  • Rasmussen SGF, Devree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah STA, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the β 2 adrenergic receptor-Gs protein complex. Nature 477(7366):549–557. https://doi.org/10.1038/nature10361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roman Laskowski BA, Macarthur MW, Thornton JM (1983) Computer programs PROCHECK: a program to check the stereochemicai quality of protein structures. In Physica Status Solidi Basic Research. 13

  • Rosell M, Rodríguez-Lumbreras LA, Fernández-Recio J (2020) Modeling of protein complexes and molecular assemblies with pyDock. In Methods in molecular biology 2165:175–198. Humana Press Inc. https://doi.org/10.1007/978-1-0716-0708-4_10

  • Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SGF, Foon ST, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318(5854):1266–1273. https://doi.org/10.1126/science.1150609

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459(7245):356–363. https://doi.org/10.1038/nature08144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salon JA, Lodowski DT, Palczewski K (2011) The significance of g protein-coupled receptor crystallography for drug discovery. https://doi.org/10.1124/pr.110.003350

  • Sari Y et al (2011) The brain as a drug target. Prog Mol Biol Transl Sci 98:401–433

  • Sauro KM, Becker WJ (2009) The stress and migraine interaction

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005). PatchDock and SymmDock: Servers for Rigid and Symmetric Docking. https://doi.org/10.1093/nar/gki481

    Article  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7. https://doi.org/10.1038/msb.2011.75

  • Sokolov AY, Lyubashina OA, Panteleev SS (2011) The role of serotonin receptors in migraine headaches. In Neurochemical Journal. 5(2):92–99. https://doi.org/10.1134/S1819712411020085

  • Strac DS, Erjavec GN, Perkovic MN, Nenadic-Sviglin K, Konjevod M, Grubor M, Pivac N (2019) The association between HTR1B gene rs13212041 polymorphism and onset of alcohol abuse. Neuropsychiatr Dis Treat 15:339–347. https://doi.org/10.2147/NDT.S191457

    Article  CAS  Google Scholar 

  • Tan HY, Nicodemus KK, Chen Q, Li Z, Brooke JK, Honea R, Kolachana BS, Straub RE, Meyer-Lindenberg A, Sei Y, Mattay VS, Callicott JH, Weinberger DR (2008) Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans. J Clin Investig 118(6):2200. https://doi.org/10.1172/JCI34725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatarczyńska E, Kłodzińska A, Stachowicz K, Chojnacka-Wójcik E (2005) Effects of a selective 5-HT1B receptor agonist and antagonists in animal models of anxiety and depression. Behav Pharmacol 15:523–534. https://doi.org/10.1097/00008877-200412000-00001

    Article  Google Scholar 

  • Tiger M, Varnäs K, Okubo Y, Lundberg J (2018) The 5-HT 1B receptor - a potential target for antidepressant treatment. In Psychopharmacology. 235(5):1317–1334. Springer Verlag. https://doi.org/10.1007/s00213-018-4872-1

  • Tova Minen M, Begasse De Dhaem O, Kroon Van Diest A, Powers S, Schwedt TJ, Lipton R, Silbersweig D (2016) Migraine and its psychiatric comorbidities. https://doi.org/10.1136/jnnp

  • Tripathi KD (2013) Essentials of medical pharmacology. 7th Edition, Jaypee Brothers Medical Publishers (P) Ltd., New Delhi pp. 170–180

  • Ujike H, Kishimoto M, Okahisa Y, Kodama M, Takaki M, Inada T, Uchimura N, Yamada M, Iwata N, Iyo M, Sora I, Ozaki N (2011) Association between 5HT1b receptor gene and methamphetamine dependence. In Current Neuropharmacology 9

  • UniProt Consortium T (2017) UniProt: the universal protein knowledgebase The UniProt Consortium. Nucleic Acids Res 45. https://doi.org/10.1093/nar/gkw1099

  • UniProt Consortium T (2021) UniProt: the universal protein knowledgebase in 2021 The UniProt Consortium. Nucleic Acids Res 49. https://doi.org/10.1093/nar/gkaa1100

  • Varga G, Szekely A, Sasvari-Szekely M (2011) Candidate gene studies of dopaminergic and serotonergic polymorphisms. In Neuropsychopharmacologia huNgarica

  • Veldman ER, Svedberg MM, Svenningsson P, Lundberg J (2017) Distribution and levels of 5-HT1B receptors in anterior cingulate cortex of patients with bipolar disorder, major depressive disorder and schizophrenia – an autoradiography study. Eur Neuropsychopharmacol 27(5):504–514. https://doi.org/10.1016/j.euroneuro.2017.02.011

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W, Huang XP, Vardy E, McCorvy JD, Gao X, Zhou XE, Melcher K, Zhang C, Bai F, Yang H, Yang L, Jiang H, Xu HE (2013) Structural basis for molecular recognition at serotonin receptors. Science 340(6132):610–614. https://doi.org/10.1126/science.1232807

  • Wang C, Xu H, Lin S, Deng W, Zhou J, Zhang Y, Shi Y, Peng D, Xue Y (2020a) GPS 5.0: an update on the prediction of kinase-specific phosphorylation sites in proteins. Genomics Proteomics Bioinformatics 18(1):72–80. https://doi.org/10.1016/j.gpb.2020.01.001

  • Wang D, Liu D, Yuchi J, He F, Jiang Y, Cai S, Li J, Xu D (2020b) MusiteDeep: a deep-learning based webserver for protein post-translational modification site prediction and visualization. Nucleic Acids Res 48. https://doi.org/10.1093/nar/gkaa275

  • Wang D, Zeng S, Xu C, Qiu W, Liang Y, Joshi T, Xu D (2017) MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction. https://doi.org/10.1093/bioinformatics/btx496

  • Wang P, Lv Q, Mao Y, Zhang C, Bao C, Sun H, Chen H, Yi Z, Cai W, Fang Y (2018) HTR1A/1B DNA methylation may predict escitalopram treatment response in depressed Chinese Han patients. J Affect Disord 228:222–228. https://doi.org/10.1016/j.jad.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, De Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303. https://doi.org/10.1093/NAR/GKY427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheatley M, Wootten D, Conner MT, Simms J, Kendrick R, Logan RT, Poyner DR, Barwell J (2012) Lifting the lid on GPCRs: the role of extracellular loops. Br J Pharmacol 165(6):1688–1703. https://doi.org/10.1111/J.1476-5381.2011.01629.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X, Ding M, Xuan JF, Xing JX, Yao J, Wu X, Wang BJ (2020) Functional polymorphisms and transcriptional analysis in the 5′ region of the human serotonin receptor 1B gene (HTR1B) and their associations with psychiatric disorders. BMC Psychiatry 20(1). https://doi.org/10.1186/s12888-020-02906-4

  • Xiao K, Sun J, Kim J, Rajagopal S, Zhai B, Villén J, Haas W, Kovacs JJ, Shukla AK, Hara MR, Hernandez M, Lachmann A, Zhao S, Lin Y, Cheng Y, Mizuno K, Ma’ayan A, Gygi SP, Lefkowitz RJ (2010) Global phosphorylation analysis of β-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci USA 107(34):15299–15304. https://doi.org/10.1073/pnas.1008461107

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7–8. https://doi.org/10.1038/NMETH.3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43(W1):W174–W181. https://doi.org/10.1093/NAR/GKV342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Yang F, Zhang D, Liu Z, Lin A, Liu C, Xiao P, Yu X, Sun JP (2017) Phosphorylation of g protein-coupled receptors: from the barcode hypothesis to the flute model. In Molecular Pharmacology. Am Soc Pharm Experimen Ther 92(3):201–210. https://doi.org/10.1124/mol.116.107839

  • Yin W, Li Z, Jin M, Yin YL, de Waal PW, Pal K, Yin Y, Gao X, He Y, Gao J, Wang X, Zhang Y, Zhou H, Melcher K, Jiang Y, Cong Y, Edward Zhou X, Yu X, Eric Xu, H. (2019) A complex structure of arrestin-2 bound to a G protein-coupled receptor. Cell Res 29(12):971–983. https://doi.org/10.1038/s41422-019-0256-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YW, Lai HY, Tang H, Chen W, Lin H (2016) Prediction of phosphothreonine sites in human proteins by fusing different features. Sci Rep 6. https://doi.org/10.1038/srep34817

  • Zheng W, Wang H, Zeng Z, Lin J, Little PJ, Srivastava LK, Quirion R (2012) The possible role of the Akt signaling pathway in schizophrenia. In Brain Research. 1470:145–158. https://doi.org/10.1016/j.brainres.2012.06.032

  • Zheng W, Zhang C, Li Y, Pearce R, Bell EW, Zhang Y (2021) Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods 1(3). https://doi.org/10.1016/j.crmeth.2021.100014

  • Zhou XE, He Y, de Waal PW, Gao X, Kang Y, Van Eps N, Yin Y, Pal K, Goswami D, White TA, Barty A, Latorraca NR, Chapman HN, Hubbell WL, Dror RO, Stevens RC, Cherezov V, Gurevich VV, Griffin PR, Xu HE (2017) Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170(3):457-469.e13. https://doi.org/10.1016/j.cell.2017.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to Professor Eitan Reuveny of the Department of Biomolecular Sciences at the Weizmann Institute of Science, Israel, for providing us the technical support to perform the 100-ns MD simulation of the receptor-arrestin complex. Their institute’s facility was instrumental in the success of our research. We would also like to express our gratitude towards all the web servers and free open-access software used in this study. All illustrations have been created/edited using https://www.biorender.com/.

Author information

Authors and Affiliations

Authors

Contributions

Kuntal Pal—conceptualization, methodology, formal investigation, supervision, writing: evaluation and editing, authentication. Oindrilla Dutta Gupta—methodology, conceptualization, investigation, validation, data organization and writing: original draft. Izhar Karbat—experimental support with the 100-ns MD simulations.

Corresponding author

Correspondence to Kuntal Pal.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 702 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta Gupta, O., Karbat, I. & Pal, K. Understanding the Molecular Regulation of Serotonin Receptor 5-HTR1B-β-Arrestin1 Complex in Stress and Anxiety Disorders. J Mol Neurosci 73, 664–677 (2023). https://doi.org/10.1007/s12031-023-02146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-023-02146-7

Keywords

Navigation