Skip to main content

Advertisement

Log in

Identification of Four Enhancer-Associated Genes as Risk Signature for Diffuse Glioma Patients

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The abnormal expressions of enhancer-associated genes have been reported to be correlated with poor prognosis of tumors, including glioblastoma (GBM). The objective of the current study is to predict prognosis by identifying enhancer-associated genes (EAGs). The profiles of genome-wide expressions of low-grade glioma (LGG) and GBM tissues in The Cancer Genome Atlas (TCGA) dataset were obtained to explore the expression patterns of EAGs in diffuse glioma. The capacity of prognosis prediction was validated by Rembrandt and GSE16011. Moreover, qPCR was utilized to confirm the effect of JQ1 and THZ1 on the EAGs. We detected 35 differentially expressed EAGs, which were predictive of overall survival. These candidate EAGs were then subjected to the multivariate cox regression analysis and were further scoped down to four signature genes, including TRAM2, SMAGP, KDELC2, and C7ORF25. A total of 662 patients were then stratified according to the expression levels of these four signature genes. The high-risk group accounted for poorer prognosis based on the Rembrandt and GSE16011 databases. The results of qPCR also demonstrated that the expression of the four EAGs could be abolished by JQ1 (bromodomain inhibitor) and THZ1 (CDK7 inhibitor) treatment. Our study not only highlights the potential role of EAGs, which can be used to improve clinical prognosis prediction in patients with diffuse glioma, but also sheds light on the specific biomarkers and therapeutic targets for diffuse glioma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bahr C et al (2018) A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. Nat 553(7689):515–520

    Article  CAS  Google Scholar 

  • Cai L, Kirchleitner SV, Zhao D, Li M, Tonn JC, Glass R, Kalin RE (2020) Glioblastoma exhibits inter-individual heterogeneity of TSPO and LAT1 expression in neoplastic and parenchymal cells. Int J Mol Sci 21(2):612. https://doi.org/10.3390/ijms21020612

    Article  CAS  PubMed Central  Google Scholar 

  • Carlsson SK, Brothers SP, Wahlestedt C (2015) Emerging treatment strategies for glioblastoma multiforme. Embo Mol Med 6(11):1359–1370

    Article  Google Scholar 

  • Cole PA (2008) Chemical probes for histone-modifying enzymes. Nat Chem Biol 4(10):590–597

    Article  CAS  Google Scholar 

  • Dave K et al (2017) Mice deficient ofMycsuper-enhancer region reveal differential control mechanism between normal and pathological growth. Elife 6:e23382

    Article  Google Scholar 

  • Dawson MA et al (2011) Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nat 478(7370):529–533

    Article  CAS  Google Scholar 

  • Delmore J et al (2011) BET bromodomain inhibition asa therapeutic strategy to target c-Myc. Cell 146(6):904–917

    Article  CAS  Google Scholar 

  • Dolecek TA, Propp JM, Stroup NE, Kruchko C (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States. In: 2005–2009 Neuro-oncology, 14 Suppl 5:v1

  • Duan Q et al (2016) Super enhancers at the miR-146a and miR-155 genes contribute to self-regulation of inflammation. Biochem Biophys Acta 4:564–571

    Google Scholar 

  • Elsässer SJ, Allis CD, Lewis PW (2011) New Epigenetic Drivers of Cancers Sci 331(6021):1145–1146

    Google Scholar 

  • Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153

    Article  CAS  Google Scholar 

  • Fukuoka K et al (2019) BRAF V600E mutant oligodendroglioma-like tumors with chromosomal instability in adolescents and young adults. Brain Pathol 30(3):515–523. https://doi.org/10.1111/bpa.12799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furnari FB et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21(21):2683–2710

    Article  CAS  Google Scholar 

  • Gelato K et al (2017) Super-enhancers define a proliferative PGC-1α-expressing melanoma subgroup sensitive to BET inhibition. Oncog 37(4):512–521

    Article  Google Scholar 

  • Geutjes EJ, Bajpe PK, Bernards R (2012) Targeting the epigenome for treatment of cancer. Oncog 31(34):3827–3844

    Article  CAS  Google Scholar 

  • Giniger E, Ptashne M (1988) Cooperative DNA binding of the yeast transcriptional activator GAL4. Proc Natl Acad Sci USA 85(2):382–386

    Article  CAS  Google Scholar 

  • Griggs DW, Johnston M (1991) Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc Natl Acad Sci U S A 88(19):8597–8601

    Article  CAS  Google Scholar 

  • Hnisz D et al (2013) Super-enhancers in the control of cell identity and disease. Cell 155(4):934–947

    Article  CAS  Google Scholar 

  • Issa JP, Kantarjian HM (2009) Targeting DNA methylation Clinical Cancer Research. Off J Am Assoc Cancer Res 15:3938

    Article  CAS  Google Scholar 

  • Jiang YY et al (2017) Targeting super-enhancer-associated oncogenes in oesophageal squamous cell carcinoma. Gut 66(8):1358–1368

    Article  CAS  Google Scholar 

  • Johnson KC, Houseman EA, King JE, von Herrmann KM, Fadul CE, Christensen BC (2016) 5-Hydroxymethylcytosine localizes to enhancer elements and is associated with survival in glioblastoma patients. Nat Commun 7:13177. https://doi.org/10.1038/ncomms13177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Wu M (2017) Epigenetic mechanisms of glioblastoma. Exon Publications 43–58

  • Lieberman F (2017) Glioblastoma update: molecular biology, diagnosis, treatment, response assessment, and translational clinical trials. F1000research 6:1892

  • Louis DN et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820

    Article  Google Scholar 

  • Lovén J et al (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153(2):320–334

    Article  Google Scholar 

  • Ludwig K, Kornblum HI (2017) Molecular Markers in Glioma J Neuro-Oncol 134:1–8

    CAS  Google Scholar 

  • Mahase S, Rattenni RN, Wesseling P, Leenders W, Baldotto C, Jain R, Zagzag D (2017) Hypoxia-mediated mechanisms associated with antiangiogenic treatment resistance in glioblastomas. Am J Pathol 187:940

    Article  CAS  Google Scholar 

  • Marks PA, Xu WS (2010) Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 107(4):600–608

    Article  Google Scholar 

  • Meng W et al (2018a) Enhanced efficacy of histone deacetylase inhibitor combined with bromodomain inhibitor in glioblastoma. J Exp Clin Cancer Res 37:241. https://doi.org/10.1186/s13046-018-0916-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng W et al (2018b) CDK7 inhibition is a novel therapeutic strategy against GBM both in vitro and in vivo. Cancer Manag Res 10:5747–5758. https://doi.org/10.2147/CMAR.S183696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaraja S et al (2017) Transcriptional dependencies in diffuse intrinsic pontine glioma. Cancer Cell 31(5):635–652

    Article  CAS  Google Scholar 

  • Ostrom QT et al (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro-Oncol 16(7):896–913

    Article  CAS  Google Scholar 

  • Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol 21:v1–v100. https://doi.org/10.1093/neuonc/noz150

    Article  PubMed  PubMed Central  Google Scholar 

  • Pott S, Lieb JD (2015) What are super-enhancers? Nat Genet 47(1):8–12

    Article  CAS  Google Scholar 

  • Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN (2010) Molecularly targeted therapy for malignant glioma. Cancer 110(1):13–24

    Article  Google Scholar 

  • Sengupta S, George RE (2017) Super-enhancer-driven transcriptional dependencies in cancer. Trends Cancer 3(4):269–281

    Article  CAS  Google Scholar 

  • Sim HW, Morgan ER, Mason WP (2017) Contemporary management of high-grade gliomas. Cns Oncol 7(01):51–65

    Article  Google Scholar 

  • Stoyanov GS, Dzhenkov D, Ghenev P, Iliev B, Enchev Y, Tonchev AB (2018) Cell biology of glioblastoma multiforme: from basic science to diagnosis and treatment. Med Oncol 35:27

    Article  Google Scholar 

  • Umehara T et al (2019) Distribution differences in prognostic copy number alteration profiles in IDH-wild-type glioblastoma cause survival discrepancies across cohorts. Acta Neuropathol Commun 7:99. https://doi.org/10.1186/s40478-019-0749-8

    Article  CAS  PubMed  Google Scholar 

  • Walid MS (2008) Prognostic factors for long-term survival after glioblastoma. Permanente Journal 12:45

    Google Scholar 

  • Wang L, Hu G (2016) Remodeling super-enhancers and oncogenic transcription. Cell Cycle 15(23):3157–3158

    Article  CAS  Google Scholar 

  • Weinstein CLJ et al (2020) A phase 3 study evaluating the safety and efficacy of a pediatric dose of mometasone furoate with and without formoterol for persistent asthma. Pediatr Pulmonol 55(4):882–889. https://doi.org/10.1002/ppul.24667

    Article  PubMed  Google Scholar 

  • Whyte W et al (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153(2):307–319

    Article  CAS  Google Scholar 

  • You JS, Jones PA (2012) Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22(1):9–20

    Article  CAS  Google Scholar 

  • Yuan C et al (2017) Super enhancer associated RAI14 is a new potential biomarker in lung adenocarcinoma. Oncotarget 8(62):105251–105261

    Article  Google Scholar 

  • Zhou M, Zhang Z, Zhao H, Bao S, Cheng L, Sun J (2017) An immune-related six-lncRNA signature to improve prognosis prediction of glioblastoma multiforme. Mol Neurobiol 55(5):3684–3697

    PubMed  Google Scholar 

Download references

Funding

This work was funded by National Natural Science Foundation of China (no. 81271382).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jiajia Wang and Xin Ma contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ma, X. & Ma, J. Identification of Four Enhancer-Associated Genes as Risk Signature for Diffuse Glioma Patients. J Mol Neurosci 72, 410–419 (2022). https://doi.org/10.1007/s12031-021-01861-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-021-01861-3

Keywords

Navigation