Skip to main content
Log in

Biglycan, a Nitric Oxide-Downregulated Proteoglycan, Prevents Nitric Oxide-Induced Neuronal Cell Apoptosis via Targeting Erk1/2 and p38 Signaling Pathways

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Nitric oxide (NO), a gaseous signaling molecule, induces apoptosis and mediates neurodegenerative diseases and brain injury. Biglycan (BGN), a member of the small leucine-rich proteoglycan family, was demonstrated to exert anti-apoptosis function in various disease models. However, little is known about the effect of BGN on NO-induced neurotoxicity. Here, for the first time, we reported that BGN protects against NO-induced apoptosis in human neuroblastoma SH-EP1 cells. This is supported by the finding that sodium nitroprusside (SNP), a NO donor, triggered downregulation of BGN in SH-EP1 cells, and over-expression of BGN strikingly attenuated NO-induced nuclear fragmentation and apoptosis of neuronal cells. More importantly, BGN remarkably blocked NO-induced phosphorylation of Erk1/2 and p38 signaling, but not JNK MAPK pathway in neuronal cells. Furthermore, inhibiting Erk1/2 by U0126 or p38 by SB203580 partially protected against NO-induced cell death. Conversely, downregulation of BGN by siRNA aggravated NO-induced neuronal cell death, which was not attenuated by U0126 or SB203580. These findings indicated that BGN, downregulated by NO, prevents NO-induced neuronal cell apoptosis via targeting Erk1/2 and p38 signaling pathways. Our results strongly suggest that BGN could be explored for the prevention of NO-induced neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asiimwe N, Yeo SG, Kim MS, Jung J, Jeong NY (2016) Nitric oxide: exploring the contextual link with Alzheimer's disease. Oxidative Med Cell Longev 2016:7205747

    Article  CAS  Google Scholar 

  • Bell JK, Mullen GE, Leifer CA, Mazzoni A, Davies DR, Segal DM (2003) Leucine-rich repeats and pathogen recognition in toll-like receptors. Trends Immunol 24(10):528–533

    Article  CAS  PubMed  Google Scholar 

  • Berendsen AD, Fisher LW, Kilts TM, Owens RT, Robey PG, Gutkind JS, Young MF (2011) Modulation of canonical Wnt signaling by the extracellular matrix component biglycan. Proc Natl Acad Sci U S A 108(41):17022–17027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjelik A, Pakaski M, Bereczki E, Gonda S, Juhasz A, Rimanoczy A, Zana M, Janka Z, Santha M, Kalman J (2007) APP mRNA splicing is upregulated in the brain of biglycan transgenic mice. Neurochem Int 50(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Brown GC (2010) Nitric oxide and neuronal death. Nitric Oxide 23(3):153–165

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8(10):8766–8775

    Article  CAS  Google Scholar 

  • Caraci F, Spampinato SF, Morgese MG, Tascedda F, Salluzzo MG, Giambirtone MC, Caruso G, Munafò A, Torrisi SA, Leggio GM, Trabace L, Nicoletti F, Drago F, Sortino MA, Copani A (2018) Neurobiological links between depression and AD: the role of TGF-β1 signaling as a new pharmacological target. Pharmacol Res 130:374–384

    Article  CAS  PubMed  Google Scholar 

  • Caricasole A, Bakker A, Copani A, Nicoletti F, Gaviraghi G, Terstappen GC (2005) Two sides of the same coin: Wnt signaling in neurodegeneration and neuro-oncology. Biosci Rep 25(5–6):309–327

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Sun HY, Li SJ, Das M, Kong JM, Gao TM (2009) Nitric oxide as an upstream signal of p38 mediates hypoxia/reoxygenation-induced neuronal death. Neurosignals 17(2):162–168

    Article  CAS  PubMed  Google Scholar 

  • Gaspar R, Pipicz M, Hawchar F, Kovacs D, Djirackor L, Gorbe A, Varga ZV, Kiricsi M, Petrovski G, Gacser A, Csonka C, Csont T (2016) The cytoprotective effect of biglycan core protein involves toll-like receptor 4 signaling in cardiomyocytes. J Mol Cell Cardiol 99:138–150

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Clavaguera F, Tolnay M (2010) The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 33(7):317–325

    Article  CAS  Google Scholar 

  • Hu L, Duan YT, Li JF, Su LP, Yan M, Zhu ZG, Liu BY, Yang QM (2014) Biglycan enhances gastric cancer invasion by activating FAK signaling pathway. Oncotarget 5(7):1885–1896

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinsella MG, Bressler SL, Wight TN (2004) The regulated synthesis of versican, decorin, and biglycan: extracellular matrix proteoglycans that influence cellular phenotype. Crit Rev Eukaryot Gene Expr 14(3):203–234

    Article  CAS  PubMed  Google Scholar 

  • Miloso M, Scuteri A, Foudah D, Tredici G (2008) MAPKs as mediators of cell fate determination: an approach to neurodegenerative diseases. Curr Med Chem 15(6):538–548

    Article  CAS  PubMed  Google Scholar 

  • Mohan H, Krumbholz M, Sharma R, Eisele S, Junker A, Sixt M, Newcombe J, Wekerle H, Hohlfeld R, Lassmann H, Meinl E (2010) Extracellular matrix in multiple sclerosis lesions: fibrillar collagens, biglycan and decorin are upregulated and associated with infiltrating immune cells. Brain Pathol 20(5):966–975

    CAS  PubMed  Google Scholar 

  • Nashida T, Takuma K, Fukuda S, Kawasaki T, Takahashi T, Baba A, Ago Y, Matsuda T (2011) The specific Na(+)/Ca(2+) exchange inhibitor SEA0400 prevents nitric oxide-induced cytotoxicity in SH-SY5Y cells. Neurochem Int 59(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Ozay R, Turkoglu E, Gurer B, Dolgun H, Evirgen O, Erguder BI, Hayirli N, Gurses L, Sekerci Z, Yilmaz ER (2017) Does decorin protect neuronal tissue via its antioxidant and antiinflammatory activity from traumatic brain injury? An experimental study. World Neurosurg 97:407–415

    Article  PubMed  Google Scholar 

  • Schaefer L, Beck KF, Raslik I, Walpen S, Mihalik D, Micegova M, Macakova K, Schonherr E, Seidler DG, Varga G, Schaefer RM, Kresse H, Pfeilschifter J (2003) Biglycan, a nitric oxide-regulated gene, affects adhesion, growth, and survival of mesangial cells. J Biol Chem 278(28):26227–26237

    Article  CAS  PubMed  Google Scholar 

  • Schaefer L, Babelova A, Kiss E, Hausser HJ, Baliova M, Krzyzankova M, Marsche G, Young MF, Mihalik D, Gotte M, Malle E, Schaefer RM, Grone HJ (2005) The matrix component biglycan is proinflammatory and signals through toll-like receptors 4 and 2 in macrophages. J Clin Invest 115(8):2223–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song R, Ao L, Zhao KS, Zheng D, Venardos N, Fullerton DA, Meng X (2014) Soluble biglycan induces the production of ICAM-1 and MCP-1 in human aortic valve interstitial cells through TLR2/4 and the ERK1/2 pathway. Inflamm Res 63(9):703–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa MM, Amaral JB, Guimarães A, Saraiva MJ (2005) Up regulation of the extracellular matrix remodeling genes, biglycan, neutrophil gelatinase-associated lipocalin, and matrix metalloproteinase-9 in familial amyloid polyneuropathy. FASEB J 19(1):124–126

    Article  CAS  PubMed  Google Scholar 

  • Thakur AK, Nigri J, Lac S, Leca J, Bressy C, Berthezene P, Bartholin L, Chan P, Calvo E, Iovanna JL, Vasseur S, Guillaumond F, Tomasini R (2016) TAp73 loss favors Smad-independent TGF-beta signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death Differ 23(8):1358–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadhwa S, Embree MC, Bi Y, Young MF (2004) Regulation, regulatory activities, and function of biglycan. Crit Rev Eukaryot Gene Expr 14(4):301–315

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Harimoto K, Xie S, Cheng H, Liu J, Wang Z (2010) Matrix protein biglycan induces osteoblast differentiation through extracellular signal-regulated kinase and Smad pathways. Biol Pharm Bull 33(11):1891–1897

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Cheng B, Yang HJ, Wang M, Feng ZW (2015) NF B protects human neuroblastoma cells from nitric oxide-induced apoptosis through upregulating biglycan. Am J Transl Res 7(9):1541–1552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xing X, Gu X, Ma T (2015a) Knockdown of biglycan expression by RNA interference inhibits the proliferation and invasion of, and induces apoptosis in, the HCT116 colon cancer cell line. Mol Med Rep 12(5):7538–7544

    Article  CAS  PubMed  Google Scholar 

  • Xing X, Gu X, Ma T, Ye H (2015b) Biglycan up-regulated vascular endothelial growth factor (VEGF) expression and promoted angiogenesis in colon cancer. Tumour Biol 36(3):1773–1780

    Article  CAS  PubMed  Google Scholar 

  • Yang HJ, Wang L, Xia YY, Chang PN, Feng ZW (2010) NF-kappaB mediates MPP+-induced apoptotic cell death in neuroblastoma cells SH-EP1 through JNK and c-Jun/AP-1. Neurochem Int 56(1):128–134

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lee SJ, Young MF, Wang MM (2015) The small leucine-rich proteoglycan BGN accumulates in CADASIL and binds to NOTCH3. Transl Stroke Res 6(2):148–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng W, Chong CM, Wang H, Zhou X, Zhang L, Wang R, Meng Q, Lazarovici P, Fang J (2016) Artemisinin conferred ERK mediated neuroprotection to PC12 cells and cortical neurons exposed to sodium nitroprusside-induced oxidative insult. Free Radic Biol Med 97:158–167

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the grants from National Natural Science Foundation of China (Nos. 31401181, 81402416, 81771336, U1704186), and grants from Henan Natural Science Foundation of China (No. 182300410381).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiajia Bi or Zhiwei Feng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Fig. S1

BGN reduces the ROS accumulation induced by NO in SH-EP1 cells. Intracellular ROS level was detected by DHE staining and observed by a fluorescent microscope. The fluorescence of DHE in SNP-treated cells was much stronger than that in the negative control, implying that the ROS level was elevated by SNP. Over-expression of BGN resulted in weakened fluorescence in the SNP-treated cells, which imply that BGN partially reduced NO-induced ROS level. Scale bars: 100 μm (n = 3) (PNG 68 kb)

High resolution image (TIF 1889 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Guo, D., Zhang, W. et al. Biglycan, a Nitric Oxide-Downregulated Proteoglycan, Prevents Nitric Oxide-Induced Neuronal Cell Apoptosis via Targeting Erk1/2 and p38 Signaling Pathways. J Mol Neurosci 66, 68–76 (2018). https://doi.org/10.1007/s12031-018-1151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-018-1151-x

Keywords

Navigation