Skip to main content

Advertisement

Log in

Prion-Like Propagation of Post-Translationally Modified Tau in Alzheimer’s Disease: A Hypothesis

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The microtubule-associated protein Tau plays a key role in the neuropathology of Alzheimer’s disease by forming intracellular neurofibrillary tangles. Tau in the normal physiological condition helps stabilize microtubules and transport. Tau aggregates due to various gene mutations, intracellular insults and abnormal post-translational modifications, phosphorylation being the most important one. Other modifications which alter the function of Tau protein are glycation, nitration, acetylation, methylation, oxidation, etc. In addition to forming intracellular aggregates, Tau pathology might spread in a prion-like manner as revealed by several in vitro and in vivo studies. The possible mechanism of Tau spread can be via bulk endocytosis of misfolded Tau species. The recent studies elucidating this mechanism have mainly focussed on the aggregation and spread of repeat domain of Tau in the cell culture models. Further studies are needed to elucidate the prion-like propagation property of full-length Tau and its aggregates in a more intense manner in vitro as well as in vivo conditions. Varied post-translational modifications can have discrete effects on aggregation propensity of Tau as well as its propagation. Here, we review the prion-like properties of Tau and hypothesize the role of glycation in prion-like properties of Tau. This post-translationally modified Tau might have an enhanced propagation property due to differential properties conferred by the modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s Disease

AMPA:

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

PTMs:

Post-translational modifications

AGEs:

Advanced Glycation End products

PHFs:

Paired helical filaments

CML:

Carboxymethyl lysine

LRP:

Laminin receptor precursor

LRP1:

LDL receptor related protein 1

RAGEs:

Receptor for Advanced Glycation End products

CNS:

Central nervous system

References

  • Adjou KT et al (2003) A novel generation of heparan sulfate mimetics for the treatment of prion diseases. J Gen Virol 84:2595–2603

    Article  PubMed  CAS  Google Scholar 

  • Ahmed Z et al (2014) A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol 127:667–683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alonso AC, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of τ into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci 98:6923–6928

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Alonso AC, Li B, Grundke-Iqbal I, Iqbal K (2006) Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc Natl Acad Sci 103:8864–8869

    Article  CAS  Google Scholar 

  • Alonso AD, Di Clerico J, Li B, Corbo CP, Alaniz ME, Grundke-Iqbal I, Iqbal K (2010) Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration. J Biol Chem 285:30851–30860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Batkulwar KB et al (2015) Investigation of phosphoproteome in RAGE signaling. Proteomics 15:245–259

    Article  PubMed  CAS  Google Scholar 

  • Beitz J (2014) Parkinson's disease: a review. Front Biosci (Schol Ed) 6:65–74

    Article  Google Scholar 

  • Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101:1371–1378

    Article  PubMed  CAS  Google Scholar 

  • Bolton DC, Meyer RK, Prusiner SB (1985) Scrapie PrP 27-30 is a sialoglycoprotein. J Virol 53:596–606

    PubMed  PubMed Central  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  • Bulic B, Pickhardt M, Schmidt B, Mandelkow EM, Waldmann H, Mandelkow E (2009) Development of tau aggregation inhibitors for Alzheimer's disease. Angew Chem Int Ed 48:1740–1752

    Article  CAS  Google Scholar 

  • Cai Z et al (2016) Role of RAGE in Alzheimer’s disease. Cell Mol Neurobiol 36:483–495

    Article  PubMed  CAS  Google Scholar 

  • Calafate S, Flavin W, Verstreken P, Moechars D (2016) Loss of Bin1 promotes the propagation of tau pathology. Cell Rep 17:931–940

    Article  PubMed  CAS  Google Scholar 

  • Cancellotti E et al (2010) Glycosylation of PrPC determines timing of neuroinvasion and targeting in the brain following transmissible spongiform encephalopathy infection by a peripheral route. J Virol 84:3464–3475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cancellotti E et al (2013) Post-translational changes to PrP alter transmissible spongiform encephalopathy strain properties. EMBO J 32:756–769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caspi S, Halimi M, Yanai A, Sasson SB, Taraboulos A, Gabizon R (1998) The anti-prion activity of Congo red putative mechanism. J Biol Chem 273:3484–3489

    Article  PubMed  CAS  Google Scholar 

  • Caughey B, Race RE, Ernst D, Buchmeier MJ, Chesebro B (1989) Prion protein biosynthesis in scrapie-infected and uninfected neuroblastoma cells. J Virol 63:175–181

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cho J-H, Johnson GV (2003) Glycogen synthase kinase 3β phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding. J Biol Chem 278:187–193

    Article  PubMed  CAS  Google Scholar 

  • Choi Y-G et al (2004) Nonenzymatic glycation at the N terminus of pathogenic prion protein in transmissible spongiform encephalopathies. J Biol Chem 279:30402–30409

    Article  PubMed  CAS  Google Scholar 

  • Clavaguera F, Hench J, Goedert M, Tolnay M (2015) Invited review: prion-like transmission and spreading of tau pathology. Neuropathol Appl Neurobiol 41:47–58

    Article  PubMed  CAS  Google Scholar 

  • Clavaguera F, Tolnay M, Goedert M (2016) The prion-like behavior of assembled Tau in transgenic mice. Cold Spring Harb Perspect Med 7(10):a024372

  • Congdon EE, Gu J, Sait HB, Sigurdsson EM (2013) Antibody uptake into neurons occurs primarily via clathrin-dependent Fcγ receptor endocytosis and is a prerequisite for acute tau protein clearance. J Biol Chem 288:35452–35465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coppola G et al (2012) Evidence for a role of the rare p. A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. Hum Mol Genet 21:3500–3512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corato M et al (2009) Doxorubicin and Congo red effectiveness on prion infectivity in golden Syrian hamster. Anticancer Res 29:2507–2512

    PubMed  CAS  Google Scholar 

  • Dear DV et al (2007) Effects of post-translational modifications on prion protein aggregation and the propagation of scrapie-like characteristics in vitro. Biochim Biophys Acta (BBA)-Proteins and Proteomics 1774:792–802

    Article  CAS  Google Scholar 

  • Drewes G et al (1992) Mitogen activated protein (MAP) kinase transforms tau protein into an Alzheimer-like state. EMBO J 11:2131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drewes G et al (1995) Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark) a novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J Biol Chem 270:7679–7688

    Article  PubMed  CAS  Google Scholar 

  • D'Souza I, Schellenberg GD (2005) Regulation of tau isoform expression and dementia. Biochim Biophys Acta (BBA)-Molecular Basis of Disease 1739:104–115

    Article  CAS  Google Scholar 

  • Dvorakova E, Prouza M, Janouskova O, Panigaj M, Holada K (2011) Development of monoclonal antibodies specific for glycated prion protein. J Toxic Environ Health A 74:1469–1475

    Article  CAS  Google Scholar 

  • Eriksen JL, Wszolek Z, Petrucelli L (2005) Molecular pathogenesis of Parkinson disease. Arch Neurol 62:353–357

    Article  PubMed  Google Scholar 

  • Fawver JN, Schall HE, Petrofes Chapa RD, Zhu X, Murray IV (2012) Amyloid-β metabolite sensing: biochemical linking of glycation modification and misfolding. J Alzheimers Dis 30:63–73

    Article  PubMed  CAS  Google Scholar 

  • Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Funk KE, Mirbaha H, Jiang H, Holtzman DM, Diamond MI (2015) Distinct therapeutic mechanisms of tau antibodies: promoting microglial clearance versus blocking neuronal uptake. J Biol Chem 290:21652–21662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gauczynski S et al (2001) The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 20:5863–5875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goedert M (2015) Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349:1255555

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Spillantini MG (2000) Tau mutations in frontotemporal dementia FTDP-17 and their relevance for Alzheimer’s disease. Biochim Biophys Acta (BBA)-Molecular Basis of Disease 1502:110–121

    Article  CAS  Google Scholar 

  • Goedert M, Spillantini M, Jakes R, Rutherford D, Crowther R (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3:519–526

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Eisenberg DS, Crowther RA (2017a) Propagation of tau aggregates and neurodegeneration Annu Rev Neurosci 40:189–210

  • Goedert M, Masuda-Suzukake M, Falcon B (2017b) Like prions: the propagation of aggregated tau and α-synuclein in neurodegeneration. Brain J Neurol 140:266

    Article  Google Scholar 

  • Gong C-X, Liu F, Grundke-Iqbal I, Iqbal K (2005) Post-translational modifications of tau protein in Alzheimer’s disease. J Neural Transm 112:813–838

    Article  PubMed  CAS  Google Scholar 

  • Guo JL, Lee VM-Y (2011) Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286:15317–15331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15:112–119

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Nonaka T, Masuda-Suzukake M (2017) Prion-like mechanisms and potential therapeutic targets in neurodegenerative disorders. Pharmacol Ther 172:22–33

  • Heiseke A, Aguib Y, Schatzl HM (2010) Autophagy, prion infection and their mutual interactions. Curr Issues Mol Biol 12:87

    PubMed  CAS  Google Scholar 

  • Holmes BB et al (2014) Proteopathic tau seeding predicts tauopathy in vivo. Proc Natl Acad Sci 111:E4376–E4385

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hong M et al (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282:1914–1917

    Article  PubMed  CAS  Google Scholar 

  • Hutton M et al (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    Article  PubMed  CAS  Google Scholar 

  • Ingram EM, Spillantini MG (2002) Tau gene mutations: dissecting the pathogenesis of FTDP-17. Trends Mol Med 8:555–562

    Article  PubMed  CAS  Google Scholar 

  • Ittner LM et al (2010) Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models. Cell 142:387–397

    Article  PubMed  CAS  Google Scholar 

  • Johnson GV, Stoothoff WH (2004) Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 117:5721–5729

    Article  PubMed  CAS  Google Scholar 

  • Kadavath H et al (2015) Tau stabilizes microtubules by binding at the interface between tubulin heterodimers proceedings of the, vol 112. National Academy of Sciences, pp 7501–7506

  • Kaufman SK et al (2016) Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo. Neuron 92:796–812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI (2012) Trans-cellular propagation of tau aggregation by fibrillar species. J Biol Chem 287:19440–19451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klöhn P-C, Castro-Seoane R, Collinge J (2013) Exosome release from infected dendritic cells: a clue for a fast spread of prions in the periphery? J Infect 67:359–368

    Article  PubMed  Google Scholar 

  • Ko L-w, Ko EC, Nacharaju P, Liu W-K, Chang E, Kenessey A, Yen S-HC (1999) An immunochemical study on tau glycation in paired helical filaments. Brain Res 830:301–313

    Article  PubMed  CAS  Google Scholar 

  • Koriyama Y, Furukawa A, Muramatsu M, Takino J-i, Takeuchi M (2015) Glyceraldehyde caused Alzheimer’s disease-like alterations in diagnostic marker levels in SH-SY5Y human neuroblastoma cells. Sci Rep 5:13313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurbatskaya K et al (2016) Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer’s disease brain. Acta Neuropathol Commun 4:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lasagna-Reeves CA et al (2012) Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Scientific Report 2

  • Lasagna-Reeves CA et al (2014) The formation of tau pore-like structures is prevalent and cell specific: possible implications for the disease phenotypes. Acta Neuropathol Commun 2(1)

  • LeBoeuf AC et al (2008) FTDP-17 mutations in tau Alter the regulation of microtubule dynamics: an "alternative core" model for normal and pathological Tau action. J Biol Chem 283:36406–36415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ledesma MD, Bonay P, Colaco C, Avila J (1994) Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem 269:21614–21619

    PubMed  CAS  Google Scholar 

  • Ledesma MD, Bonay P, Avila J (1995) τ protein from Alzheimer's disease patients is glycated at its tubulin-binding domain. J Neurochem 65:1658–1664

    Article  PubMed  CAS  Google Scholar 

  • Li L, Napper S, Cashman NR (2010) Immunotherapy for prion diseases: opportunities and obstacles. Immunotherapy 2:269–282

    Article  PubMed  CAS  Google Scholar 

  • Liu SJ et al (2004) Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem 279:50078–50088

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Liu Y, Li L, Qin P, Iqbal J, Deng Y, Qing H (2016) Glycation alter the process of tau phosphorylation to change tau isoforms aggregation property. Biochim Biophys Acta (BBA)-Molecular Basis of Disease 1862:192–201

    Article  CAS  Google Scholar 

  • Lovestone S et al (2015) A phase II trial of tideglusib in Alzheimer's disease. J Alzheimers Dis 45:75–88

    Article  PubMed  CAS  Google Scholar 

  • Mably AJ et al (2015) Tau immunization: a cautionary tale? Neurobiol Aging 36:1316–1332

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow E-M, Drewes G, Biernat J, Gustke N, Van Lint J, Jv V, Mandelkow E (1992) Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett 314:315–321

    Article  PubMed  CAS  Google Scholar 

  • Margalith I et al (2012) Polythiophenes inhibit prion propagation by stabilizing prion protein (PrP) aggregates. J Biol Chem 287:18872–18887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsuoka Y et al (2007) Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer's disease at early pathological stage. J Mol Neurosci 31:165–170

    PubMed  CAS  Google Scholar 

  • Mirbaha H, Holmes BB, Sanders DW, Bieschke J, Diamond MI (2015) Tau trimers are the minimal propagation unit spontaneously internalized to seed intracellular aggregation. J Biol Chem 290:14893–14903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morimoto BH, Schmechel D, Hirman J, Blackwell A, Keith J, Gold M, Investigators A--S (2013) A double-blind, placebo-controlled, ascending-dose, randomized study to evaluate the safety, tolerability and effects on cognition of AL-108 after 12 weeks of intranasal administration in subjects with mild cognitive impairment. Dement Geriatr Cogn Disord 35:325–339

    Article  PubMed  CAS  Google Scholar 

  • Mukrasch MD, von Bergen M, Biernat J, Fischer D, Griesinger C, Mandelkow E, Zweckstetter M (2007) The “jaws” of the tau-microtubule interaction. J Biol Chem 282:12230–12239

    Article  PubMed  CAS  Google Scholar 

  • Necula M, Kuret J (2004) Pseudophosphorylation and glycation of tau protein enhance but do not trigger fibrillization in vitro. J Biol Chem 279:49694–49703

    Article  PubMed  CAS  Google Scholar 

  • Nicholls SB et al (2017) Characterization of TauC3 antibody and demonstration of its potential to block tau propagation. PLoS One 12:e0177914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohgami N, Nagai R, Ikemoto M, Arai H, Kuniyasu A, Horiuchi S, Nakayama H (2001) Cd36, a member of the class b scavenger receptor family, as a receptor for advanced glycation end products. J Biol Chem 276:3195–3202

    Article  PubMed  CAS  Google Scholar 

  • Ott C, Jacobs K, Haucke E, Santos AN, Grune T, Simm A (2014) Role of advanced glycation end products in cellular signaling. Redox Biol 2:411–429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP (2013) Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14:389–394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porto-Carreiro I, Février B, Paquet S, Vilette D, Raposo G (2005) Prions and exosomes: from PrPc trafficking to PrPsc propagation. Blood Cell Mol Dis 35:143–148

    Article  CAS  Google Scholar 

  • Reynolds MR, Berry RW, Binder LI (2005) Site-specific nitration differentially influences τ assembly in vitro. Biochemistry 44:13997–14009

    Article  PubMed  CAS  Google Scholar 

  • Roettger Y, Du Y, Bacher M, Zerr I, Dodel R, Bach J-P (2013) Immunotherapy in prion disease. Nat Rev Neurol 9:98–105

    Article  PubMed  CAS  Google Scholar 

  • Saijo E, Hughson AG, Raymond GJ, Suzuki A, Horiuchi M, Caughey B (2016) PrPSc-specific antibody reveals C-terminal conformational differences between prion strains. J Virol 90:4905–4913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanders DW et al (2014) Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82:1271–1288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schneider A, Biernat J, Von Bergen M, Mandelkow E, Mandelkow E-M (1999) Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 38:3549–3558

    Article  PubMed  CAS  Google Scholar 

  • Schweers O, Schönbrunn-Hanebeck E, Marx A, Mandelkow E (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J Biol Chem 269:24290–24297

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    Article  PubMed  CAS  Google Scholar 

  • Shyng S-L, Heuser JE, Harris DA (1994) A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits. J Cell Biol 125:1239–1250

    Article  PubMed  CAS  Google Scholar 

  • Song L et al (2015) Analysis of tau post-translational modifications in rTg4510 mice, a model of tau pathology. Mol Neurodegener 10:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steinhilb ML, Dias-Santagata D, Fulga TA, Felch DL, Feany MB (2007) Tau phosphorylation sites work in concert to promote neurotoxicity in vivo. Mol Biol Cell 18:5060–5068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sydow A, Mandelkow E-M (2010) Prion-like propagation of mouse and human tau aggregates in an inducible mouse model of tauopathy. Neurodegener Dis 7:28–31

    Article  PubMed  CAS  Google Scholar 

  • Takeda S et al (2015) Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nat Commun 6:8490

    Article  PubMed  CAS  Google Scholar 

  • Taylor DR, Hooper NM (2007) The low-density lipoprotein receptor-related protein 1 (LRP1) mediates the endocytosis of the cellular prion protein. Biochem J 402:17–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiwari SS et al (2016) Alzheimer-related decrease in CYFIP2 links amyloid production to tau hyperphosphorylation and memory loss. Brain 139:2751–2765

    Article  PubMed  PubMed Central  Google Scholar 

  • Tseng H-C, Lu Q, Henderson E, Graves DJ (1999) Phosphorylated tau can promote tubulin assembly. Proc Natl Acad Sci 96:9503–9508

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vella L, Sharples R, Lawson V, Masters C, Cappai R, Hill A (2007) Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 211:582–590

    Article  PubMed  CAS  Google Scholar 

  • Walker LC, Diamond MI, Duff KE, Hyman BT (2013) Mechanisms of protein seeding in neurodegenerative diseases. JAMA Neurol 70:304–310

    Article  PubMed  Google Scholar 

  • Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17:22–35

    Article  CAS  Google Scholar 

  • Wegmann S, Nicholls S, Takeda S, Fan Z, Hyman BT (2016) Formation, release, and internalization of stable tau oligomers in cells. J Neurochem 139:1163–1174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei Y, Han C, Wang Y, Wu B, Su T, Liu Y, He R (2015) Ribosylation triggering Alzheimer's disease-like tau hyperphosphorylation via activation of CaMKII. Aging Cell 14:754–763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weingarten MD, Lockwood AH, Hwo S-Y, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci 72:1858–1862

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu JW et al (2013) Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem 288:1856–1870

    Article  PubMed  CAS  Google Scholar 

  • Wu JW et al (2016) Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci 19:1085–1092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu L, Zheng J, Margittai M, Nussinov R, Ma B (2016) How does hyperphopsphorylation promote tau aggregation and modulate filament structure and stability? ACS Chem Neurosci 7:565–575

    Article  PubMed  CAS  Google Scholar 

  • Yan S et al (1994) Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci 91:7787–7791

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Shweta Kishor Sonawane acknowledges a fellowship from the Department of Biotechnology (DBT), India. The authors acknowledge Abhishek Balmik and Nalini Vijay Gorantla for proofreading the manuscript and useful comments.

Funding

This project was supported in part by grants from the Department of Science and Technology—Science and Engineering Research Board (DST-SERB, Young Investigator grant): SB/YS/LS-355/2013, Department of Biotechnology from Neuroscience Task Force (Medical

Biotechnology-Human Development & Disease Biology (DBT-HDDB))-BT/PR/15780/MED/30/1629/2015 and in-house CSIR-National Chemical Laboratory grant MLP029526 and CSIR-network project BSC0115.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subashchandrabose Chinnathambi.

Ethics declarations

Conflict of Interest Statement

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonawane, S.K., Chinnathambi, S. Prion-Like Propagation of Post-Translationally Modified Tau in Alzheimer’s Disease: A Hypothesis. J Mol Neurosci 65, 480–490 (2018). https://doi.org/10.1007/s12031-018-1111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-018-1111-5

Keywords

Navigation