Skip to main content

Advertisement

Log in

Effect of Rosuvastatin on OX40L and PPAR-γ Expression in Human Umbilical Vein Endothelial Cells and Atherosclerotic Cerebral Infarction Patients

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Atherosclerotic cerebral infarction (ACI) is characterized by extremely high fatality and disability rate. Recent studies indicate that co-stimulatory signal of tumor necrosis factor superfamily OX40/OX40L contributes to the atherosclerosis effect in ACI patients. However, it remains unclear the mechanism underlying the anti-atherosclerosis process. So this study aims to investigate the effects of rosuvastatin on the expression of OX40L, peroxisome proliferator-activated receptors gamma (PPAR-γ) in human umbilical vein endothelial cells (HUVEC), and human peripheral blood lymphocytes. Different concentration of rosuvastatin and oxidized low-density lipoprotein (OX-LDL) co-intervene HUVEC to observe the expression of OX40L and PPAR-γ using real-time quantitative RT-PCR (Q-RTPCR) and Western-blot. Furthermore, we examined the level changes of plasmic sOX40L and hs-CRP in acute atherosclerotic cerebral infarction patients. The results demonstrated that concentration-dependent and time-dependent OX-LDL remarkably stimulate the expression of OX40L and inhibit the expression of PPAR-γ in vitro. But concentration-dependent rosuvastatin can reverse the impact of OX-LDL, suggesting that rosuvastatin can prevent the expression of OX40L, and the process may be associated with mevalonate pathway. In vivo, acute atherosclerotic cerebral infarction patients taking 20 mg rosuvastatin exhibited significantly reduced expression of OX40L in peripheral blood lymphocyte, sOX40L in blood plasma, and hs-CRP compared with before treatment. Our studies identified rosuvastatin as an effective medicine in controlling atherosclerosis process in ACI by inhibiting OX40L and stimulating PPAR-γ expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander RW (1995) Hypertension and the pathogenesis of atherosclerosis. Hypertension 25(1):155–161

    Article  CAS  PubMed  Google Scholar 

  • Andarini S, Kikuchi T, Nukiwa M, Pradono P, Suzuki K, Ohkouchi S, Inoue A, Maemondo M, Ishii N, Saijo Y, Sugamura K, Nukiwa T (2004) Adenovirus vector-mediated in vivo gene transfer of OX40 ligand to tumor cells enhances antitumor immunity of tumor-bearing hosts. Cancer Res 64(1):3281–3287

    Article  CAS  PubMed  Google Scholar 

  • Bhakdi S, Dorweiler B, Kirchmann R, Torzewski J, Weise E, Tranum-Jensen J, Walev I, Wieland E (1995) On the pathogenesis of atherosclerosis: enzymatic transformation of human low-density lipoprotein to an atherogenic moiety. J Exp Med 182(6):1959–1971

    Article  CAS  PubMed  Google Scholar 

  • Collins AR, Meehan WP, Kintscher U, Jackson S, Wakino S, Noh G, Palinski W, Hsueh WA, Law RE (2001) Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 21(3):365–371

    Article  CAS  PubMed  Google Scholar 

  • Collot-Teixeira S, Martin J, McDermott-Roe C, PostonR MGJL (2007) CD36 and macrophages in atherosclerosis. Cardiovasc Res 75:468–477

    Article  CAS  PubMed  Google Scholar 

  • Do KH, Yeo SS, Lee J, Jang SH (2013) Injury of the corticoreticular pathway in patients with proximal weakness of cerebral infarct: diffusion tensor tractography study. Neurosci Lett 546(1):21–25

    Article  CAS  PubMed  Google Scholar 

  • Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS, Iwamoto Y, Thompson B, Carlson AL, Heidt T, Majmudar MD, Lasitschka F, Etzrodt M, Waterman P, Waring MT, Chicoine AT, van der Laan AM, Niessen HW, Piek JJ, Rubin BB, Butany J, Stone JR, Katus HA, Murphy SA, Morrow DA, Sabatine MS, Vinegoni C, Moskowitz MA, Pittet MJ, Libby P, Lin CP, Swirski FK, Weissleder R, Nahrendorf M (2012) Myocardial infarction accelerates atherosclerosis. Nature 487(7404):325–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feig JE, Shang Y, Rotllan N, Vengrenyuk Y, Wu C, Shamir R (2011) Statins promote the regression of atherosclerosis via activation of the CCR7-dependent emigration pathway in macrophages. PLoS One 6(12):e28534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flanagan K, Fitzgerald K, Baker J, Regnstrom K, Gardai S, Bard F, Mocci S, Seto P, You M, Larochelle C, Prat A, Chow S, Li L, Vandevert C, Zago W, Lorenzana C, Nishioka C, Hoffman J, Botelho R, Willits C, Tanaka K, Johnston J, Yednock (2012) Laminin-411 Is a vascular ligand for MCAM and facilitates TH17 cell entry into the CNS. PLoS One 7(7):e40443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han L, Li MG, Liu YX, Han CG, Ye P (2012) Atorvastatin may delay cardiac aging by upregulating peroxisome proliferator-activated receptors in rats. Pharmacology 89(1–2):74–82

    Article  CAS  PubMed  Google Scholar 

  • Henson P (2003) Suppression of macrophage inflammatory responses by PPARs. Proc Natl Acad Sci U S A 100(11):6295–6296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gold JA, Karulf M, Kelly A, Weinberg AD, Jeffrey A (2010) OX40 ligand regulates inflammation and mortality in the innate immune response to sepsis. J Immunol 185(8):4856–4862

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin R, Liu J, Gan W, Yang G (2004) C-reactive protein-induced expression of CD40-CD40L and the effect of lovastatin and fenofibrate on it in human vascular endothelial cells. Biol Pharm Bull 27(10):1537–1543

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Yan J, Gong J, Wang C, Chen G (2011) Positive correlation between pregnancy-associated plasma protein-A level and OX40 ligand expression in patients with acute coronary syndromes. Biomed Pharmacother 65(3):193–197

    Article  CAS  PubMed  Google Scholar 

  • Martín-Ventura JL, Blanco-Colio LM, Gómez-Hernández A, Munoz-Garcia B, Vega M, Serrano J, Ortega L, Hernandez G, Tunon J, Egido J (2005) Intensive treatment with atorvastatin reduces inflammation in mononuclear cells and human atherosclerotic lesions in 1 month. Stroke 36(8):1796–1800

    Article  PubMed  Google Scholar 

  • Marx N, Bourcier T, Sukhova GK, Libby P, Plutzky J (1999) PPAR-gamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPAR-gamma as a potential mediator in vascular disease. Arterioscler Thromb Vasc Biol 19(3):546–551

    Article  CAS  PubMed  Google Scholar 

  • Mendel I, Shevach EM (2006) Activated T cells express the 0X40 ligand: requirements for induction and co-stimulatory function. Immunology 117(2):196–204

    Article  CAS  PubMed  Google Scholar 

  • Nakano M, Fukumoto Y, Satoh K, Tto Y, Kagaya Y, Ishii N, Sugamura K, Shimokawa H (2010) OX40 ligand plays an important role in the development of atherosclerosis through vasa vasorum neovascularization. Cardiovasc Res 88(3):539–546

    Article  CAS  PubMed  Google Scholar 

  • Ohshima Y, Yang LP, Uchiyama T, Tanaka Y, Baum P, Sergerie M, Hermann P, Delespesse G (1998) OX40 co-stimulation enhances interleukin-4 (IL-4) expression at priming and promotes the differentiation of naive human CD4(+) T cells into high IL-4-producing effectors. Blood 92(9):3338–3345

    CAS  PubMed  Google Scholar 

  • Ortego M, Bustos C, Hernández-Presa MA, Tuñón J, Diaz C, Hernandez G, Egido J (1999) Atorvastatin reduces NF-kappaB activation and chemokine expression in vascular smooth muscle cells and mononuclear cells. Atherosclerosis 147(2):253–261

    Article  CAS  PubMed  Google Scholar 

  • Peng DQ, Huang S, Yuan SG, Zhao SP (2010) Increased soluble OX40L is associated with carotid intima-media thickness. Clin Lab 56(9–10):449–457

    CAS  PubMed  Google Scholar 

  • Rajamannan NM, Subramaniam M, Stock SR, Stone NJ, Springett M, Ignatiev KI, McConnell JP, Singh RJ, Bonow RO, Spelsberg TC (2005) Atorvastatin inhibits calcification and enhances nitric oxide synthase production in the hypercholesterolemic aortic valve. Heart 91(6):806–810

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Shao Q, Shen LH, Hu LH, Pu J, Jing Q, He B (2012) Atorvastatin suppresses inflammatory response induced by OX-LDL through inhibition of ERK phosphorylation, IκBα degradation, and COX-2 expression in murine macrophages. J Cell Biochem 113(2):611–618

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK, Kalita J, Dohare P (2009) Studies of free radical generation by neurons in a rat model of cerebral venous sinus thrombosis. Neurosci Lett 450:127–131

    Article  CAS  PubMed  Google Scholar 

  • Sugawara A, Takeuchi K, Uruno A, Ikeda Y, Arima S, Kudo M, Sato K, Taniyama Y, Ito S (2001) Transcriptional suppression of type 1 angiotensin II receptor gene expression by peroxisome proliferator-activated receptor-gamma in vascular smooth muscle cells. Endocrinology 142(7):3125–3134

    CAS  PubMed  Google Scholar 

  • Valzasina B, Guiducci C, Dislich H, Killeen N, Weinberg AD (2005) Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 105(7):2845–2851

    Article  CAS  PubMed  Google Scholar 

  • Voqiatzi G, Tousoulis D, Stefanadis C (2009) The role of oxidative stress in atherosclerosis. Hellenic J Cardiol 50:402–409

    Google Scholar 

  • Wang XS, Ishimori N, Korstanje R, Rollins J, Paigen B (2005) Identifying novel genes for atherosclerosis through mouse–human comparative genetics. Am J Hum Genet 77(1):1–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang YH, Liu YJ (2007) OX40-OX40L interactions: a promising therapeutic target for allergic diseases? J Clin Invest 117(12):3655–3657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 2 17(11):1410–1422

    Article  CAS  Google Scholar 

  • Xu Z, Zhao S, Zhou H, Ye H, Li J (2004) Atorvastatin lowers plasma matrix metalloproteinase-9 in patients with acute coronary syndrome. Clin Chem 50(4):750–753

    Article  CAS  PubMed  Google Scholar 

  • Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lewis L (2004) Cross-talk between activated human NK cells and CD4+ T cells via OX40–OX40 ligand interactions. J Immunol 173(1):3716–3724

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by the Natural Science Foundation of Heilongjiang Province, China (grant no. D201167 ) and Science and Technology Project of Heilongjiang Province, China (grant no. GC10C305-2).

Conflicts of Interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Additional information

Jing-Yu Zhang and Feng-Jun Wang contributed equally to the present study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, JY., Liu, B., Wang, YN. et al. Effect of Rosuvastatin on OX40L and PPAR-γ Expression in Human Umbilical Vein Endothelial Cells and Atherosclerotic Cerebral Infarction Patients. J Mol Neurosci 52, 261–268 (2014). https://doi.org/10.1007/s12031-013-0134-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0134-1

Keywords

Navigation