Skip to main content

Advertisement

Log in

A New Experimental Model for Neuronal and Glial Differentiation Using Stem Cells Derived from Human Exfoliated Deciduous Teeth

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Stem cells isolated from human adult tissues represent a promising source for neural differentiation studies in vitro. We have isolated and characterized stem cells from human exfoliated deciduous teeth (SHEDs). These originate from the neural crest and therefore particularly suitable for induction of neural differentiation. We here established a novel three-stage protocol for neural differentiation of SHEDs cells. After adaptation to a serum-free and neurogenic environment, SHEDs were induced to differentiate. This resulted in the formation of stellate or bipolar round-shaped neuron-like cells with subpopulations expressing markers of sensory neurons (Brn3a, peripherin) and glia (myelin basic protein). Commercial PCR array analyses addressed the expression profiles of genes related to neurogenesis and cAMP/calcium signalling. We found distinct evidence for the upregulation of genes regulating the specification of sensory (MAF), sympathetic (midkine, pleitrophin) and dopaminergic (tyrosine hydroxylase, Nurr1) neurons and the differentiation and support of myelinating and non-myelinating Schwann cells (Krox24, Krox20, apolipoprotein E). Moreover, for genes controlling major developmental signalling pathways, there was upregulation of BMP (TGF β-3, BMP2) and Notch (Notch 2, DLL1, HES1, HEY1, HEY2) in the differentiating SHEDs. SHEDs treated according to our new differentiation protocol gave rise to mixed neuronal/glial cell cultures, which opens new possibilities for in vitro studies of neuronal and glial specification and broadens the potential for the employment of such cells in experimental models and future treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arthur A, Rychkov G, Shi S, Koblar S, Gronthos S (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells (Dayton, Ohio) 26(3e615310-8fc0-ce51-d02a-9b75707ef61d):1787–1882. doi:10.1634/stemcells.2007-0979

  • Boison D, Chen JF, Fredholm B (2010) Adenosine signaling and function in glial cells. Cell Death Differ 17(d9ebcffd-6d4c-db57-e80c-9b75707e1779):1071–1153. doi:10.1038/cdd.2009.131

  • Boyles J, Pitas R, Wilson E, Mahley R, Taylor J (1985) Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J Clin Investig 76(83a4c912-b23d-bd44-3f66-9b75707e4a2c):1501–1514. doi:10.1172/jci112130

  • Clayton K, Podlesniy P, Figueiro-Silva J, López-Doménech G, Benitez L, Enguita M, Abad M, Soriano E, Trullas R (2012) NP1 regulates neuronal activity-dependent accumulation of BAX in mitochondria and mitochondrial dynamics. J Neurosci Off J Soc Neurosci 32(af33b79b-f816-bf11-2b99-9b75708b1837):1453–1519. doi:10.1523/jneurosci.4604-11.2012

  • Cox ME, Deeble PD, Lakhani S, Parsons SJ (1999) Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible. Cancer Res (0a29f16c-c722-058b-ff7f-9b75707efea5)

  • da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119(Pt 11):2204–2213

    Article  PubMed  Google Scholar 

  • da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26(9):2287–2299. doi:10.1634/stemcells.2007-1122

    Article  PubMed  Google Scholar 

  • Falk A, Frisen J (2002) Amphiregulin is a mitogen for adult neural stem cells. J Neurosci Res 69(6):757–762. doi:10.1002/jnr.10410

    Article  PubMed  CAS  Google Scholar 

  • Fernandes K, McKenzie I, Mill P, Smith K, Akhavan M, Barnabé-Heider F, Biernaskie J, Junek A, Kobayashi N, Toma J, Kaplan D, Labosky P, Rafuse V, Hui C-C, Miller F (2004) A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 6(bce5f16a-0182-7b99-10cd-9b75707d6d33):1082–1175. doi:10.1038/ncb1181

  • Gögel S, Gubernator M, Minger S (2011) Progress and prospects: stem cells and neurological diseases. Gene Ther 18(e4417058-6d0c-3c9f-100a-9b75708f5453):1–7. doi:10.1038/gt.2010.130

  • Goulburn AL, Stanley EG, Elefanty AG, Anderson SA (2012) Generating GABAergic cerebral cortical interneurons from mouse and human embryonic stem cells. Stem Cell Res 8(3):416–426. doi:10.1016/j.scr.2011.12.002

    Article  PubMed  CAS  Google Scholar 

  • Gregory CA, Reyes E, Whitney MJ, Spees JL (2006) Enhanced engraftment of mesenchymal stem cells in a cutaneous wound model by culture in allogenic species-specific serum and administration in fibrin constructs. Stem Cells 24(10):2232–2243. doi:10.1634/stemcells.2005-0612

    Article  PubMed  CAS  Google Scholar 

  • Helfand B, Loomis P, Yoon M, Goldman R (2003) Rapid transport of neural intermediate filament protein. J Cell Sci 116(8fc58920-c9e7-0298-6079-9b75708bb2e5):2345–2404. doi:10.1242/jcs.00526

  • Henley S, Dick F (2012) The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div 7(80ebeaa3-3d3f-3dd6-125e-9b75707fb83b):10. doi:10.1186/1747-1028-7-10

  • Hu B-Y, Zhang S-C (2009) Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc 4(01a5a69c-6b08-f653-a530-9b75708101f2):1295–1599. doi:10.1038/nprot.2009.127

  • Hu BY, Du ZW, Li XJ, Ayala M, Zhang SC (2009) Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development 136(9):1443–1452. doi:10.1242/dev.029447

    Article  PubMed  CAS  Google Scholar 

  • Jankovic J, Chen S, Le W (2005) The role of Nurr1 in the development of dopaminergic neurons and Parkinson's disease. Prog Neurobiol 77(920926b6-02b5-cf78-8839-9b757090d425):128–166. doi:10.1016/j.pneurobio.2005.09.001

  • Kenzelmann D, Chiquet-Ehrismann R, Tucker R (2007) Teneurins, a transmembrane protein family involved in cell communication during neuronal development. Cell Mol Life Sci CMLS 64(70fb9120-2d40-b40b-2e8e-9b75708f4ef3):1452–1458. doi:10.1007/s00018-007-7108-9

  • Kim SU, de Vellis J (2009) Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 87(10):2183–2200. doi:10.1002/jnr.22054

    Article  PubMed  CAS  Google Scholar 

  • Király M, Porcsalmy B, Pataki A, Kádár K, Jelitai M, Molnár B, Hermann P, Gera I, Grimm W-D, Ganss B, Zsembery A, Varga G (2009) Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochem Int 55(b485ca2b-ca3f-694a-1095-9b75707c3214):323–355. doi:10.1016/j.neuint.2009.03.017

  • Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T, Tabar V, Studer L (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol. 25(f29653c4-2875-7230-5e45-9b757081335a):1468–1543. doi:10.1038/nbt1365

  • Li L, Hung A, Porter A (2008) Secretogranin II: a key AP-1-regulated protein that mediates neuronal differentiation and protection from nitric oxide-induced apoptosis of neuroblastoma cells. Cell Death Differ 15 (6318b9d1-0b05-081d-bbd1-9b75708cbe46):879–967. doi:10.1038/cdd.2008.8

  • Lindvall O, Barker RA, Brüstle O, Isacson O, Svendsen CN (2012) Clinical translation of stem cells in neurodegenerative disorders. Cell Stem Cell 10(2):151–155

    Article  PubMed  CAS  Google Scholar 

  • Massague J (2012) TGFbeta signalling in context. Nat Rev Mol Cell Biol 13(10):616–630. doi:10.1038/nrm3434

    Article  PubMed  CAS  Google Scholar 

  • Morrison S, Perez S, Qiao Z, Verdi J, Hicks C, Weinmaster G, Anderson D (2000) Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101(2d4b829c-0aab-3b20-2934-9b757091b123):499–1009

    Google Scholar 

  • Pavan W, Raible D (2012) Specification of neural crest into sensory neuron and melanocyte lineages. Dev Biol 366(0b304e3b-7e59-a81d-af3d-9b75708e26b3):55–118. doi:10.1016/j.ydbio.2012.02.038

  • Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108(25):10343–10348. doi:10.1073/pnas.1105135108

    Article  PubMed  CAS  Google Scholar 

  • Pintér E, Helyes Z, Szolcsányi J (2006) Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol Ther 112(70eb4bec-86c1-3a8d-9dd5-9b75708541e8):440–496. doi:10.1016/j.pharmthera.2006.04.010

  • Pivoriuunas A, Surovas A, Borutinskaite V, Matuzeviccius D, Treigyte G, Savickiene J, Tunaitis V, Aldonyte R, Jarmalavicciuute A, Suriakaite K, Liutkeviccius E, Venalis A, Navakauskas D, Navakauskiene R, Magnusson KE (2010) Proteomic analysis of stromal cells derived from the dental pulp of human exfoliated deciduous teeth. Stem Cells Dev 19(7):1081–1093. doi:10.1089/scd.2009.0315

    Article  PubMed  CAS  Google Scholar 

  • Reiff T, Huber L, Kramer M, Delattre O, Janoueix-Lerosey I, Rohrer H (2011) Midkine and Alk signaling in sympathetic neuron proliferation and neuroblastoma predisposition. Dev (Cambridge, England) 138(83d1ac7c-61bf-ff03-f90e-9b75707ea540):4699–5407. doi:10.1242/dev.072157

  • Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481(7381):295–305. doi:10.1038/nature10761

    Article  PubMed  CAS  Google Scholar 

  • Santagati F, Rijli F (2003) Cranial neural crest and the building of the vertebrate head. Nat Rev Neurosci 4(b6514d1d-a1db-b4f3-d776-9b757080eeab):806–824. doi:10.1038/nrn1221

  • Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith A, Nishikawa S-I (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129(3f2ac373-b298-8035-5cbc-9b757089eb0e):1377–1465. doi:10.1016/j.cell.2007.04.028

  • Thier M, Worsdorfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T, Hoffmann P, Nothen MM, Brustle O, Edenhofer F (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10(4):473–479. doi:10.1016/j.stem.2012.03.003

    Article  PubMed  CAS  Google Scholar 

  • Topilko P, Levi G, Merlo G, Mantero S, Desmarquet C, Mancardi G, Charnay P (1997) Differential regulation of the zinc finger genes Krox-20 and Krox-24 (Egr-1) suggests antagonistic roles in Schwann cells. J Neurosci Res 50(8993b146-941b-52fa-b687-9b757081bdf0):702–714

    Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041. doi:10.1038/nature08797

    Article  PubMed  CAS  Google Scholar 

  • Vodrazka P, Korostylev A, Hirschberg A, Swiercz JM, Worzfeld T, Deng S, Fazzari P, Tamagnone L, Offermanns S, Kuner R (2009) The semaphorin 4D-plexin-B signalling complex regulates dendritic and axonal complexity in developing neurons via diverse pathways. Eur J Neurosci 30(7):1193–1208. doi:10.1111/j.1460-9568.2009.06934.x

    Article  PubMed  Google Scholar 

  • Vodyanik MA, Yu J, Zhang X, Tian S, Stewart R, Thomson JA, Slukvin II (2010) A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell 7(6):718–729. doi:10.1016/j.stem.2010.11.011

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wang X, Sun Z, Wang X, Yang H, Shi S, Wang S (2010) Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 19(938c6087-b406-d3e0-b89e-9b75708260cb):1375–1458. doi:10.1089/scd.2009.0258

  • Wang T, Xiong J-Q, Ren X-B, Sun W (2012) The role of Nogo-A in neuroregeneration: a review. Brain Res Bull 87(c7074f99-df20-b59c-87fd-9b757090125b):499–1002. doi:10.1016/j.brainresbull.2012.02.011

  • Wende H, Lechner S, Cheret C, Bourane S, Kolanczyk M, Pattyn A, Reuter K, Munier F, Carroll P, Lewin G, Birchmeier C (2012) The transcription factor c-Maf controls touch receptor development and function. Science (New York, NY) 335 (4d54389e-5a5d-243b-9c18-9b7570901825):1373–1379. doi:10.1126/science.1214314

  • Wu SM, Hochedlinger K (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13(5):497–505

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Yang D, Zarnowska ED, Du Z, Werbel B, Valliere C, Pearce RA, Thomson JA, Zhang SC (2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23(6):781–790. doi:10.1634/stemcells.2004-0365

    Article  PubMed  CAS  Google Scholar 

  • Yin C, Zhou S, Jiang L, Sun X (2012) Mechanical injured neurons stimulate astrocytes to express apolipoprotein E through ERK pathway. Neurosci Lett 515(d9063f17-c03a-0902-95f6-9b757086b5d9):77–158. doi:10.1016/j.neulet.2012.03.023

  • Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19(12):1129–1133. doi:10.1038/nbt1201-1129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant (No. MIP-084/2011) from the Research Council of Lithuania and the Swedish Research Council (KEM; No. 2010-3045). We would like to thank Dr. Arūnas Stirkė for technical assistance with the confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustas Pivoriūnas.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

After the induction of neural differentiation, SHEDs were monitored continuously in real time for approximately 120 h using Cell-IQ® PC Cell Imaging & Analysis System (CM Technologies) (WMV 23325 kb)

Table S1

Differential expression of genes important for neurogenesis and neural stem cells during neural differentiation of SHEDs. We used RT2 Profiler™ PCR Arrays from SABiosciences, A QIAGEN company (Neurogenesis and Neural Stem Cell array, PAHS-404A). Gene expression levels were analysed using RT2 Profiler PCR Array Data Analysis software (version 3.5, QIAGEN) (DOC 246 kb)

Table S2

Differential expression of genes important for cAMP/Ca2+ signalling during neural differentiation of SHEDs. We used RT2 Profiler™ PCR Arrays from SABiosciences, A QIAGEN company (Human cAMP/Ca2+ PathwayFinder array, PAHS-066A). Gene expression levels were analysed using RT2 Profiler PCR Array Data Analysis software (version 3.5, QIAGEN) (DOC 157 kb)

Fig. S1

Differential expression of genes important for neurogenesis and neural stem cells during neural differentiation of SHEDs. Heatmap was generated using RT2 Profiler PCR Array Data Analysis software (version 3.5, QIAGEN) (DOC 173 kb)

Fig. S2

Differential expression of genes important for cAMP/Ca2+ signalling during neural differentiation of SHEDs. Heatmap was generated using RT2 Profiler PCR Array Data Analysis software (version 3.5, QIAGEN) (DOC 136 kb)

Fig. S3

Formation of compact multilayer structures similar to the ganglions in differentiating SHEDs (JPEG 895 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarmalavičiūtė, A., Tunaitis, V., Strainienė, E. et al. A New Experimental Model for Neuronal and Glial Differentiation Using Stem Cells Derived from Human Exfoliated Deciduous Teeth. J Mol Neurosci 51, 307–317 (2013). https://doi.org/10.1007/s12031-013-0046-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0046-0

Keywords

Navigation