Skip to main content

Advertisement

Log in

Characterization of Excitability and Voltage-gated Ion Channels of Neural Progenitor Cells in Rat Hippocampus

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

We have observed the excitability of rat neural progenitor cells (NPCs) and characterized the profile of the voltage-gated ion channels, with the help of the electrophysiological measurements in NPCs in vitro, in order to clarify the electrophysiological property of NPCs. The membrane potential changes of neural progenitors were detected with fluorescent dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC4(3)) by a confocal laser scanning microscope. The changes of fluorescent intensity of DiBAC4(3) stain after KCl stimulation were slight which indicated that the NPCs were inexcitable. Under the current-clamp, spontaneous discharge was not detected and the action potential was failed to be elicited. These findings were consistent with the result from DiBAC4(3) staining. Under the voltage clamp, the NPCs expressed two types of outward K+ currents with no evidence for Na+ currents. An outward delayed rectifier type K+ current and outward transient K+ current were elicited. Our findings demonstrate NPCs’ electrophysiological properties: the electrical inexcitability indicated by the presence of two types of K+ currents and the absence of Na+ current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrous, D. N., Koehl, M., & Le Moal, M. (2005). Adult neurogenesis: from precursors to network and physiology. Physiological Reviews, 85, 523–569.

    Article  PubMed  CAS  Google Scholar 

  • Baxter, D. F., Kirk, M., Garcia, A. F., Raimondi, A., Holmqvist, M. H., Flint, K. K., et al. (2002). A novel membrane potential-sensitive fluorescent dye improves cell-based assays for ion channels. Journal of Biomolecular Screening, 7, 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Berger, T., Schnitzer, J., & Kettenmann, H. (1991). Developmental changes in the membrane current pattern, K+ buffer capacity, and morphology of glial cells in the corpus callosum slice. Journal of Neuroscience, 11, 3008–3024.

    PubMed  CAS  Google Scholar 

  • Cho, T., Bae, J. H., Choi, H. B., Kim, S. S., McLarnon, J. G., Suh-Kim, H., et al. (2002). Human neural stem cells: electrophysiological properties of voltage-gated ion channels. Neuroreport, 13, 1447–1452.

    Article  PubMed  CAS  Google Scholar 

  • Encinas, J. M., & Enikolopov, G. (2008). Identifying and quantitating neural stem and progenitor cells in the adult brain. Methods in Cell Biology, 85, 243–272.

    Article  PubMed  CAS  Google Scholar 

  • Epps, D. E., Wolfe, M. L., & Groppi, V. (1994). Characterization of the steady-state and dynamic fluorescence properties of the potential-sensitive dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol (Dibac4(3)) in model systems and cells. Chemistry and Physics of Lipids, 69, 137–150.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, D. H., Thinschmidt, J. S., Peel, A. L., Papke, R. L., & Reier, P. J. (1996). Differentiation of ionic currents in CNS progenitor cells: dependence upon substrate attachment and epidermal growth factor. Experimental Neurology, 140, 206–217.

    Article  PubMed  CAS  Google Scholar 

  • Giles, W., Nakajima, T., Ono, K., & Shibata, E. F. (1989). Modulation of the delayed rectifier K+ current by isoprenaline in bull-frog atrial myocytes. Journal of Physiology, 415, 233–249.

    PubMed  CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., & Sigworth, F. J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv, 391, 85–100.

    Article  PubMed  CAS  Google Scholar 

  • Hausser, M., Raman, I. M., Otis, T., Smith, S. L., Nelson, A., du Lac, S., et al. (2004). The beat goes on: spontaneous firing in mammalian neuronal microcircuits. Journal of Neuroscience, 24, 9215–9219.

    Article  PubMed  CAS  Google Scholar 

  • Herberth, B., Pataki, A., Jelitai, M., Schlett, K., Deak, F., Spat, A., et al. (2002). Changes of KCl sensitivity of proliferating neural progenitors during in vitro neurogenesis. Journal of Neuroscience Research, 67, 574–582.

    Article  PubMed  CAS  Google Scholar 

  • Hogg, R. C., Chipperfield, H., Whyte, K. A., Stafford, M. R., Hansen, M. A., Cool, S. M., et al. (2004). Functional maturation of isolated neural progenitor cells from the adult rat hippocampus. European Journal of Neuroscience, 19, 2410–2420.

    Article  PubMed  Google Scholar 

  • Klee, R., Ficker, E., & Heinemann, U. (1995). Comparison of voltage-dependent potassium currents in rat pyramidal neurons acutely isolated from hippocampal regions CA1 and CA3. Journal of Neurophysiology, 74, 1982–1995.

    PubMed  CAS  Google Scholar 

  • Korotzer, A. R., & Cotman, C. W. (1992). Voltage-gated currents expressed by rat microglia in culture. Glia, 6, 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Liebau, S., Propper, C., Bockers, T., Lehmann-Horn, F., Storch, A., Grissmer, S., et al. (2006). Selective blockage of Kv1.3 and Kv3.1 channels increases neural progenitor cell proliferation. Journal of Neurochemistry, 99, 426–437.

    Article  PubMed  CAS  Google Scholar 

  • Neusch, C., Weishaupt, J. H., & Bahr, M. (2003). Kir channels in the CNS: emerging new roles and implications for neurological diseases. Cell & Tissue Research, 311, 131–138.

    CAS  Google Scholar 

  • Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., et al. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95, 379–391.

    Article  PubMed  CAS  Google Scholar 

  • Park, K. S., Jung, K. H., Kim, S., Kim, K. S., Choi, M. R., Kim, Y., et al. (2007). Functional expression of ion channels in mesenchymal stem cells derived from umbilical cord vein. Stem Cells, 25, 2044–2052.

    Article  PubMed  CAS  Google Scholar 

  • Patil, N., Cox, D. R., Bhat, D., Faham, M., Myers, R. M., & Peterson, A. S. (1995). A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nature Genetics, 11, 126–129.

    Article  PubMed  CAS  Google Scholar 

  • Piper, D. R., Mujtaba, T., Rao, M. S., & Lucero, M. T. (2000). Immunocytochemical and physiological characterization of a population of cultured human neural precursors. Journal of Neurophysiology, 84, 534–548.

    PubMed  CAS  Google Scholar 

  • Reyes-Haro, D., Miledi, R., & Garcia-Colunga, J. (2005). Potassium currents in primary cultured astrocytes from the rat corpus callosum. Journal of Neurocytology, 34, 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, R. R., Zigova, T., & Luskin, M. B. (1999). Potassium currents in precursor cells isolated from the anterior subventricular zone of the neonatal rat forebrain. Journal of Neurophysiology, 81, 95–102.

    PubMed  CAS  Google Scholar 

  • Tse, F. W., Fraser, D. D., Duffy, S., & MacVicar, B. A. (1992). Voltage-activated K+ currents in acutely isolated hippocampal astrocytes. Journal of Neuroscience, 12, 1781–1788.

    PubMed  CAS  Google Scholar 

  • Wonderlin, W. F., & Strobl, J. S. (1996). Potassium channels, proliferation and G1 progression. Journal of Membrane Biology, 154, 91–107.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, A., Gaja, N., Ohya, S., Muraki, K., Narita, H., Ohwada, T., et al. (2001). Usefulness and limitation of DiBAC4(3), a voltage-sensitive fluorescent dye, for the measurement of membrane potentials regulated by recombinant large conductance Ca2+-activated K+ channels in HEK293 cells. Japanese Journal of Pharmacology, 86, 342–350.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, X., Eisen, A. M., McBain, C. J., & Gallo, V. (1998). A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development, 125, 2901–2914.

    PubMed  CAS  Google Scholar 

  • Zhang, M., Guo, Y., Jiang, L., & Liu, G. X. (2007). The morphology and membrane potential of primary cultured rat hippocampal neurons with serum-free media. Chinese Journal of Cell Biology, 29, 131–134 (in Chinese).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Congjian Zhao (Max-Delbrück-Center for Molecular Medicine, Berlin-Buch) for correcting the English writing of the manuscript and the editor and reviewers for their valuable comments and suggestions that greatly improved the presentation of this paper. This work was supported by grants from the National Natural Science Foundation of China (No. 30672217) and the Science Foundation of Chongqing Health Bureau (No. 06-2-158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Jiang, L., Chen, H. et al. Characterization of Excitability and Voltage-gated Ion Channels of Neural Progenitor Cells in Rat Hippocampus. J Mol Neurosci 35, 289–295 (2008). https://doi.org/10.1007/s12031-008-9065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9065-7

Keywords

Navigation