Skip to main content

Advertisement

Log in

Electrophilic Cyclopentenone Isoprostanes in Neurodegeneration

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Although oxidative stress has been implicated in the pathogenesis of numerous neurodegenerative conditions, the precise mechanisms by which reactive oxygen species (ROS) induce neuronal death are still being explored. The generation of reactive lipid peroxidation products is thought to contribute to ROS neurotoxicity. Isoprostanes (IsoPs), prostaglandin-like molecules formed in vivo via the ROS-mediated oxidation of arachidonic acid, have been previously demonstrated to be formed in increased amounts in the brains of patients with various neurodegenerative diseases. Recently, we have identified a new class of IsoPs, known as A2- and J2-IsoPs or cyclopentenone IsoPs, which are highly reactive electrophiles and form adducts with thiol-containing molecules, including cysteine residues in proteins and glutathione. Cyclopentenone IsoPs are favored products of the IsoP pathway in the brain and are formed abundantly after oxidant injury. These compounds also potently induce neuronal apoptosis by a mechanism which involves glutathione depletion, ROS generation, and activation of several redox-sensitive pathways that overlap with those involved in other forms of oxidative neurodegeneration. Cyclopentenone IsoPs also enhance neurodegeneration caused by other insults at biologically relevant concentrations. These data are reviewed, whereas new data demonstrating the neurotoxicity of J-ring IsoPs and a discussion of the possible role of cyclopentenone IsoPs as contributors to neurodegeneration are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

12/15-LOX:

12/15-lipoxygenase

AA:

arachidonic acid

AAPH:

2,2′-azobis(2-amidinopropane)hydrochloride

AD:

Alzheimer’s disease

ERK:

extracellular signal-regulated kinase

GSH:

glutathione

GST:

glutathione transferase

IsoP:

isoprostane

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

nM:

nanomolar

PG:

prostanglandin

μM:

micromolar

References

  • Alessandrini, A., Namura, S., Moskowitz, M. A., & Bonventre, J. V. (1999). MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proceedings of the National Academy of Sciences of the United States of America, 96, 12866–12869.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, J. K. (2004). Oxidative stress in neurodegeneration: cause or consequence? Natural Medicines, 10(Suppl), S18–S25.

    Google Scholar 

  • Bayir, H., Kagan, V. E., Tyurina, Y. Y., Tyurin, V., Ruppel, R. A., Adelson, P. D., et al. (2002). Assessment of antioxidant reserves and oxidative stress in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatric Research, 51, 571–578.

    Article  PubMed  Google Scholar 

  • Beal, M. F. (1995). Aging, energy, and oxidative stress in neurodegenerative diseases. Annals of Neurology, 38, 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Brunetti, L., Michelotto, B., Orlando, G., Recinella, L., Di Nisio, C., Ciabattoni, G., et al. (2004). Aging increases amyloid beta-peptide-induced 8-iso-prostaglandin F2alpha release from rat brain. Neurobiology Aging, 25, 125–129.

    Article  CAS  Google Scholar 

  • Camandola, S., Poli, G., & Mattson, M. P. (2000). The lipid peroxidation product 4-hydroxy-2,3-nonenal inhibits constitutive and inducible activity of nuclear factor kappa B in neurons. Brain Research. Molecular Brain Research, 85, 53–60.

    Article  PubMed  CAS  Google Scholar 

  • Canals, S., Casarejos, M. J., de Bernardo, S., Rodriguez-Martin, E., & Mena, M. A. (2003). Nitric oxide triggers the toxicity due to glutathione depletion in midbrain cultures through 12-lipoxygenase. Journal of Biological Chemistry, 278, 21542–21549.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Morrow, J. D., & Roberts, L. J., 2nd (1999a). Formation of reactive cyclopentenone compounds in vivo as products of the isoprostane pathway. Journal of Biological Chemistry, 274, 10863–10868.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Zackert, W. E., Roberts, L. J., 2nd, & Morrow, J. D. (1999b). Evidence for the formation of a novel cyclopentenone isoprostane, 15-A2t-isoprostane (8-iso-prostaglandin A2) in vivo. Biochimica Et Biophysica Acta, 1436, 550–556.

    PubMed  CAS  Google Scholar 

  • Chu, C. T., Levinthal, D. J., Kulich, S. M., Chalovich, E. M., & DeFranco, D. B. (2004). Oxidative neuronal injury. The dark side of ERK1/2. European Journal of Biochemistry, 271, 2060–2066.

    Article  PubMed  CAS  Google Scholar 

  • Davies, S. S., Amarnath, V., & Roberts, L. J., 2nd (2004). Isoketals: highly reactive gamma-ketoaldehydes formed from the H2-isoprostane pathway. Chemistry and Physics of Lipids, 128, 85–99.

    Article  PubMed  CAS  Google Scholar 

  • Du, S., McLaughlin, B., Pal, S., & Aizenman, E. (2002). In vitro neurotoxicity of methylisothiazolinone, a commonly used industrial and household biocide, proceeds via a zinc and extracellular signal-regulated kinase mitogen-activated protein kinase-dependent pathway. Journal of Neuroscience, 22, 7408–7416.

    PubMed  CAS  Google Scholar 

  • Greco, A., Minghetti, L., Sette, G., Fieschi, C., & Levi, G. (1999). Cerebrospinal fluid isoprostane shows oxidative stress in patients with multiple sclerosis. Neurology, 53, 1876–1879.

    PubMed  CAS  Google Scholar 

  • Keller, J. N., & Mattson, M. P. (1998). Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Reviews in the Neurosciences, 9, 105–116.

    PubMed  CAS  Google Scholar 

  • Kruman, I., Bruce-Keller, A. J., Bredesen, D., Waeg, G., & Mattson, M. P. (1997). Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. Journal of Neuroscience, 17, 5089–5100.

    PubMed  CAS  Google Scholar 

  • Lebeau, A., Terro, F., Rostene, W., & Pelaprat, D. (2004). Blockade of 12-lipoxygenase expression protects cortical neurons from apoptosis induced by beta-amyloid peptide. Cell Death and Differentiation, 11, 875–884.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. J., Cho, H. N., Soh, J. W., Jhon, G. J., Cho, C. K., Chung, H. Y., et al. (2003). Oxidative stress-induced apoptosis is mediated by ERK1/2 phosphorylation. Experimental Cell Research, 291, 251–266.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Maher, P., & Schubert, D. (1997). A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron, 19, 453–463.

    Article  PubMed  CAS  Google Scholar 

  • Lovell, M. A., Xie, C., & Markesbery, W. R. (2001). Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiology Aging, 22, 187–194.

    Article  CAS  Google Scholar 

  • Mark, R. J., Fuson, K. S., & May, P. C. (1999). Characterization of 8-epiprostaglandin F2alpha as a marker of amyloid beta-peptide-induced oxidative damage. Journal of Neurochemistry, 72, 1146–1153.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., Fu, W., Waeg, G., & Uchida, K. (1997). 4-Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. Neuroreport, 8, 2275–2281.

    PubMed  CAS  Google Scholar 

  • Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P. P., et al. (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature, 402, 309–313.

    Article  PubMed  CAS  Google Scholar 

  • Milne, G. L., Zanoni, G., Porta, A., Sasi, S., Vidari, G., Musiek, E. S., et al. (2004). The cyclopentenone product of lipid peroxidation, 15-A2t-isoprostane, is efficiently metabolized by HepG2 cells via conjugation with glutathione. Chemical Research in Toxicology, 17, 17–25.

    Article  PubMed  CAS  Google Scholar 

  • Milne, G. L., Musiek, E. S., & Morrow, J. D. (2005). The cyclopentenone (a(2)/j(2)) isoprostanes-unique, highly reactive products of arachidonate peroxidation. Antioxidants & Redox Signalling, 7, 210–220.

    Article  CAS  Google Scholar 

  • Minghetti, L., Greco, A., Cardone, F., Puopolo, M., Ladogana, A., Almonti, S., et al. (2000). Increased brain synthesis of prostaglandin E2 and F2-isoprostane in human and experimental transmissible spongiform encephalopathies. Journal of Neuropathology and Experimental Neurology, 59, 866–871.

    PubMed  CAS  Google Scholar 

  • Montine, K. S., Olson, S. J., Amarnath, V., Whetsell, W. O., Jr., Graham, D. G., & Montine, T. J. (1997). Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer’s disease is associated with inheritance of APOE4. American Journal of Pathology, 150, 437–443.

    PubMed  CAS  Google Scholar 

  • Montine, T. J., Beal, M. F., Cudkowicz, M. E., O’Donnell, H., Margolin, R. A., McFarland, L., et al. (1999a). Increased CSF F2-isoprostane concentration in probable AD. Neurology, 52, 562–565.

    PubMed  CAS  Google Scholar 

  • Montine, T. J., Beal, M. F., Robertson, D., Cudkowicz, M. E., Biaggioni, I., O’Donnell, H., et al. (1999b). Cerebrospinal fluid F2-isoprostanes are elevated in Huntington’s disease. Neurology, 52, 1104–1105.

    PubMed  CAS  Google Scholar 

  • Montine, T. J., Markesbery, W. R., Zackert, W., Sanchez, S. C., Roberts, L. J., 2nd, & Morrow, J. D. (1999c). The magnitude of brain lipid peroxidation correlates with the extent of degeneration but not with density of neuritic plaques or neurofibrillary tangles or with APOE genotype in Alzheimer’s disease patients. American Journal of Pathology, 155, 863–868.

    PubMed  CAS  Google Scholar 

  • Montine, T. J., Neely, M. D., Quinn, J. F., Beal, M. F., Markesbery, W. R., Roberts, L. J., et al. (2002). Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radical Biology & Medicine, 33, 620–626.

    Article  CAS  Google Scholar 

  • Montine, T. J., Montine, K. S., Reich, E. E., Terry, E. S., Porter, N. A., & Morrow, J. D. (2003). Antioxidants significantly affect the formation of different classes of isoprostanes and neuroprostanes in rat cerebral synaptosomes. Biochemical Pharmacology, 65, 611–617.

    Article  PubMed  CAS  Google Scholar 

  • Montine, K. S., Quinn, J. F., Zhang, J., Fessel, J. P., Roberts, L. J., 2nd, Morrow, J. D., et al. (2004). Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chemistry and Physics of Lipids, 128, 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Morrow, J. D., Hill, K. E., Burk, R. F., Nammour, T. M., Badr, K. F., & Roberts, L. J., 2nd (1990). A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proceedings of the National Academy of Sciences of the United States of America, 87, 9383–9387.

    Article  PubMed  CAS  Google Scholar 

  • Morrow, J. D., Minton, T. A., Mukundan, C. R., Campbell, M. D., Zackert, W. E., Daniel, V. C., et al. (1994). Free radical-induced generation of isoprostanes in vivo. Evidence for the formation of D-ring and E-ring isoprostanes. Journal of Biological Chemistry, 269, 4317–4326.

    PubMed  CAS  Google Scholar 

  • Morrow, J. D., & Roberts, L. J., 2nd (1998). Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidant stress. Methods in Enzymology, 300, 3–12.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L., & Coyle, J. T. (1989). Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron, 2, 1547–1558.

    Article  PubMed  CAS  Google Scholar 

  • Musiek, E. S., Breeding, R. S., Milne, G. L., Zanoni, G., Morrow, J. D., & McLaughlin, B. (2006). Cyclopentenone isoprostanes are novel bioactive products of lipid oxidation which enhance neurodegeneration. Journal of Neurochemistry, 97, 1301–1313.

    Article  PubMed  CAS  Google Scholar 

  • Musiek, E. S., & Morrow, J. D. (2005). F2-Isoprostanes as Markers of Oxidant Stress: In L. G. Costa, E. Hodgson, D. Lawrence and D. J. Reed (Eds) An Overview, in Current Protocols in Toxicology, Supp. 24. (pp. 17.5–17.6). Edison, NJ: Wiley.

    Google Scholar 

  • Namura, S., Iihara, K., Takami, S., Nagata, I., Kikuchi, H., Matsushita, K., et al. (2001). Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proceedings of the National Academy of Sciences of the United States of America, 98, 11569–11574.

    Article  PubMed  CAS  Google Scholar 

  • Neely, M. D., Sidell, K. R., Graham, D. G., & Montine, T. J. (1999). The lipid peroxidation product 4-hydroxynonenal inhibits neurite outgrowth, disrupts neuronal microtubules, and modifies cellular tubulin. Journal of Neurochemistry, 72, 2323–2333.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama, M., Watanabe, T., Ueda, N., Tsukamoto, H., & Watanabe, K. (1993). Arachidonate 12-lipoxygenase is localized in neurons, glial cells, and endothelial cells of the canine brain. Journal of Histochemistry and Cytochemistry, 41, 111–117.

    PubMed  CAS  Google Scholar 

  • Noshita, N., Sugawara, T., Hayashi, T., Lewen, A., Omar, G., & Chan, P. H. (2002). Copper/zinc superoxide dismutase attenuates neuronal cell death by preventing extracellular signal-regulated kinase activation after transient focal cerebral ischemia in mice. Journal of Neuroscience, 22, 7923–7930.

    PubMed  CAS  Google Scholar 

  • Perry, G., Roder, H., Nunomura, A., Takeda, A., Friedlich, A. L., Zhu, X., et al. (1999). Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation. Neuroreport, 10, 2411–2415.

    Article  PubMed  CAS  Google Scholar 

  • Picklo, M. J., Amarnath, V., McIntyre, J. O., Graham, D. G., & Montine, T. J. (1999). 4-Hydroxy-2(E)-nonenal inhibits CNS mitochondrial respiration at multiple sites. Journal of Neurochemistry, 72, 1617–1624.

    Article  PubMed  CAS  Google Scholar 

  • Pratico, D., Clark, C. M., Lee, V. M., Trojanowski, J. Q., Rokach, J., & FitzGerald, G. A. (2000). Increased 8,12-iso-iPF2alpha-VI in Alzheimer’s disease: correlation of a noninvasive index of lipid peroxidation with disease severity. Annals of Neurology, 48, 809–812.

    Article  PubMed  CAS  Google Scholar 

  • Pratico, D., MY Lee, V., Trojanowski, J. Q., Rokach, J., & Fitzgerald, G. A. (1998). Increased F2-isoprostanes in Alzheimer’s disease: evidence for enhanced lipid peroxidation in vivo. FASEB Journal, 12, 1777–1783.

    PubMed  CAS  Google Scholar 

  • Pratico, D., Uryu, K., Leight, S., Trojanoswki, J. Q., & Lee, V. M. (2001). Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. Journal of Neuroscience, 21, 4183–4187.

    PubMed  CAS  Google Scholar 

  • Pratico, D., Zhukareva, V., Yao, Y., Uryu, K., Funk, C. D., Lawson, J. A., et al. (2004). 12/15-lipoxygenase is increased in Alzheimer’s disease: Possible involvement in brain oxidative stress. American Journal of Pathology, 164, 1655–1662.

    PubMed  CAS  Google Scholar 

  • Reich, E. E., Markesbery, W. R., Roberts, L. J., 2nd, Swift, L. L., Morrow, J. D., & Montine, T. J. (2001). Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer’s disease. American Journal of Pathology, 158, 293–297.

    PubMed  CAS  Google Scholar 

  • Roberts, L. J., 2nd, & Morrow, J. D. (2002). Products of the isoprostane pathway: unique bioactive compounds and markers of lipid peroxidation. Cellular and Molecular Life Sciences, 59, 808–820.

    Article  PubMed  CAS  Google Scholar 

  • Sayre, L. M., Zelasko, D. A., Harris, P. L., Perry, G., Salomon, R. G., & Smith, M. A. (1997). 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. Journal of Neurochemistry, 68, 2092–2097.

    Article  PubMed  CAS  Google Scholar 

  • Shringarpure, R., Grune, T., Sitte, N., & Davies, K. J. (2000). 4-Hydroxynonenal-modified amyloid-beta peptide inhibits the proteasome: possible importance in Alzheimer’s disease. Cellular and Molecular Life Sciences, 57, 1802–1809.

    Article  PubMed  CAS  Google Scholar 

  • Smith, W. W., Norton, D. D., Gorospe, M., Jiang, H., Nemoto, S., Holbrook, N. J., et al. (2005). Phosphorylation of p66Shc and forkhead proteins mediates Abeta toxicity. Journal of Cell Biology, 169, 331–339.

    Article  PubMed  CAS  Google Scholar 

  • Stanciu, M., Wang, Y., Kentor, R., Burke, N., Watkins, S., Kress, G., et al. (2000). Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. Journal of Biological Chemistry, 275, 12200–12206.

    Article  PubMed  CAS  Google Scholar 

  • Tan, S., Sagara, Y., Liu, Y., Maher, P., & Schubert, D. (1998). The regulation of reactive oxygen species production during programmed cell death. Journal of Cell Biology, 141, 1423–1432.

    Article  PubMed  CAS  Google Scholar 

  • Tan, S., Schubert, D., & Maher, P. (2001). Oxytosis: A novel form of programmed cell death. Current Topics in Medicinal Chemistry, 1, 497–506.

    Article  PubMed  CAS  Google Scholar 

  • Trinei, M., Giorgio, M., Cicalese, A., Barozzi, S., Ventura, A., Migliaccio, E., et al. (2002). A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene, 21, 3872–3878.

    Article  PubMed  CAS  Google Scholar 

  • Xie, C., Lovell, M. A., & Markesbery, W. R. (1998). Glutathione transferase protects neuronal cultures against four hydroxynonenal toxicity. Free Radical Biology & Medicine, 25, 979–988.

    Article  CAS  Google Scholar 

  • Xie, C., Lovell, M. A., Xiong, S., Kindy, M. S., Guo, J., Xie, J., et al. (2001). Expression of glutathione-S-transferase isozyme in the SY5Y neuroblastoma cell line increases resistance to oxidative stress. Free Radical Biology & Medicine, 31, 73–81.

    Article  CAS  Google Scholar 

  • Zagol-Ikapitte, I., Masterson, T. S., Amarnath, V., Montine, T. J., Andreasson, K. I., Boutaud, O., et al. (2005). Prostaglandin H-derived adducts of proteins correlate with Alzheimer’s disease severity. Journal of Neurochemistry, 94, 1140–1145.

    Article  PubMed  CAS  Google Scholar 

  • Zanoni, G., Porta, A., & Vidari G. (2002). First total synthesis of A(2) isoprostane. Journal of Organic Chemistry, 67, 4346–4351.

    Article  PubMed  CAS  Google Scholar 

  • Zanoni, G., Porta, A., Castronovo, F., & Vidari, G. (2003). First total synthesis of J(2) isoprostane. Journal of Organic Chemistry, 68, 6005–6010.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Wang, H., Li, J., Jimenez, D. A., Levitan, E. S., Aizenman E., et al. (2004). Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. Journal of Neuroscience, 24, 10616–10627.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J. H., Kulich, S. M., Oury, T. D., & Chu, C. T. (2002). Cytoplasmic aggregates of phosphorylated extracellular signal-regulated protein kinases in Lewy body diseases. American Journal of Pathology, 161, 2087–2098.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants DK48831, GM15431, CA77839, RR00095, ES13125, HD15052, and NS050396. ESM was supported by a grant from the PhRMA Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason D. Morrow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musiek, E.S., McLaughlin, B. & Morrow, J.D. Electrophilic Cyclopentenone Isoprostanes in Neurodegeneration. J Mol Neurosci 33, 80–86 (2007). https://doi.org/10.1007/s12031-007-0042-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-0042-3

Keywords

Navigation