Skip to main content
Log in

Development of nanobiocomposite fibers by controlled assembly of rod-like tobacco mosaic virus

  • Original Articles
  • Published:
NanoBiotechnology

Abstract

One-dimensional composite nanofibers were generated via in-situ polymerization of polyaniline on the surface of tobacco mosaic virus (TMV) and the head-to-tail assembly of TMV. These composite nanofibers have very high aspect ratio and good processibility. Two factors contribute to the formation of such TMV-composite fibers: (1) the accumulation and polymerization of monomers on the surface of TMV; and (2) the possibility of prolongation and stabilization of TMV helices. This strategy has been used in the synthesis of other polymeric bionanofibers with a variety of starting materials. In addition, the morphology of the final composite materials can be modulated by the covalent modification of TMV. When sulfonic acid groups are tailored to the exterior surface of TMV, polymerization of aniline can induce TMV to form branched structures with knot-like connections. On the other hand, modification of TMV with noncharged groups like acetylenes can block the assembly process completely. TEM and AFM are used to analyze the morphology and structure of composite fibers. This novel strategy to assemble TMV into 1D supramolecular assembly could be utilized in the fabrication of advanced materials for potential applications including electronics, optics, sensing, and biomedical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui Y, Lieber CM. Science 2001;291:851–53.

    Article  CAS  Google Scholar 

  2. Huang Y, Duan X, Wei Q, Lieber CM. Science 2001;291:630–3.

    Article  CAS  Google Scholar 

  3. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, et al. Adv Mater 2003;15:353–89.

    Article  CAS  Google Scholar 

  4. Melosh NA, Boukai A, Diana F, Gerardot B, Badolato A, Petroff PM, et al. Science 2003;300:112–5.

    Article  CAS  Google Scholar 

  5. Busbee BD, Obare SO, Murphy CJ. Adv Mater 2003;15:414–6.

    Article  CAS  Google Scholar 

  6. Murphy CJ, Jana NR. Adv Mater 2002;14:80–2.

    Article  CAS  Google Scholar 

  7. Niemeyer CM. Angew Chem Int Ed 2001;40:4128–58.

    Article  CAS  Google Scholar 

  8. Flynn CE, Lee S-W, Peelle BR, Belcher AM. Acta Mater 2003;51:5867–80.

    Article  CAS  Google Scholar 

  9. Seeman NC, Belcher AM. Proc Natl Acad Sci USA 2002;99:6451–5.

    Article  CAS  Google Scholar 

  10. Seeman NC. Chem Biol 2003;10:1151–9.

    Article  CAS  Google Scholar 

  11. Caswell KK, Wilson JN, Bunz UHF, Murphy CJ. J Am Chem Soc 2003;125:13914–5.

    Article  CAS  Google Scholar 

  12. Dujardin E, Mann S. Adv Eng Mater 2002;4:461–74.

    Article  CAS  Google Scholar 

  13. Shenton W, Douglas T, Young M, Stubbs G, Mann S. Adv Mater 1999;11:253–6.

    Article  CAS  Google Scholar 

  14. Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, et al. Science 2006;312:885–8.

    Article  CAS  Google Scholar 

  15. Mao C, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A, et al. Science 2004;303:213–7.

    Article  CAS  Google Scholar 

  16. Lee LA, Wang Q. Nanomedicine 2006;2:137–49.

    CAS  Google Scholar 

  17. Klug A. Philos Trans R Soc Lond B Biol Sci 1999;354:531–5.

    Article  CAS  Google Scholar 

  18. Stubbs G. Rep Prog Phys 2001;64:1389–425.

    Article  CAS  Google Scholar 

  19. Jeng TW, Crowther RA, Stubbs G, Chiu W. J Mol Biol 1989;205:251–7.

    Article  CAS  Google Scholar 

  20. Butler PJG, Lomonossoff GP. Biophys J 1980;32:295–312.

    Article  CAS  Google Scholar 

  21. Yi H, Nisar S, Lee SY, Powers MA, Bentley WE, Payne GF, et al. Nano Lett 2005;5:1931–6.

    Article  CAS  Google Scholar 

  22. Schlick TL, Ding Z, Kovacs EW, Francis MB. J Am Chem Soc 2005;127:3718–23.

    Article  CAS  Google Scholar 

  23. Fowler CE, Shenton W, Stubbs G, Mann S. Adv Mater 2001;13:1266–9.

    Article  CAS  Google Scholar 

  24. Fonoberov VA, Balandin AA. Nano Lett 2005;5:1920–3.

    Article  CAS  Google Scholar 

  25. Royston E, Lee SY, Culver JN, Harris MT. J Colloid Interface Sci 2006;298:706–12.

    Article  CAS  Google Scholar 

  26. Knez M, Bittner AM, Boes F, Wege C, Jeske H, Maiss E, et al. Nano Lett 2003;3:1079–82.

    Article  CAS  Google Scholar 

  27. Knez M, Kadri A, Wege C, Gosele U, Jeske H, Nielsch K. Nano Lett 2006;6:1172–7.

    Article  CAS  Google Scholar 

  28. Knez M, Sumser M, Bittner AM, Wege C, Jeske H, Martin TP, et al. Adv Funct Mater 2004;14:116–24.

    Article  CAS  Google Scholar 

  29. Knez M, Sumser MP, Bittner AM, Wege C, Jeske H, Hoffmann DM, et al. Langmuir 2004;20:441–7.

    Article  CAS  Google Scholar 

  30. Lee SY, Culver JN, Harris MT. J Colloid Interface Sci 2006;297:554–60.

    Article  CAS  Google Scholar 

  31. Dujardin E, Peet C, Stubbs G, Culver JN, Mann S. Nano Lett 2003;3:413–7.

    Article  CAS  Google Scholar 

  32. Tseng RJ, Tsai C, Ma L, Ouyang J, Ozkan CS, Yang Y. Nature Nanotechnology 2006;1:72–7.

    Article  CAS  Google Scholar 

  33. Kalinin SV, Jesse S, Liu WL, Balandin AA. Appl Phys Lett 2006;88:153902.

    Article  CAS  Google Scholar 

  34. Niu Z, Bruckman MA, Kotakadi VS, He J, Emrick T, Russell TP, et al. Chem Commun 2006; 3019–21.

  35. Huang J, Virji S, Weiller BH, Kaner RB. J Am Chem Soc 2003;125:314–5.

    Article  CAS  Google Scholar 

  36. Huang J, Kaner RB. J Am Chem Soc 2004;126:851–5.

    Article  CAS  Google Scholar 

  37. Huang J, Kaner RB. Chem Commun 2006; 4:367–76.

    Article  CAS  Google Scholar 

  38. Li D, Kaner RB. J Am Chem Soc 2006;128:968–75.

    Article  CAS  Google Scholar 

  39. Chiou NR, Epstein AJ. Adv Mater 2005;17:1679–83.

    Article  CAS  Google Scholar 

  40. Butler PJ. Philos Trans R Soc Lond B Biol Sci 1999;354:537–50.

    Article  CAS  Google Scholar 

  41. Wadu-Mesthrige K, Pati B, McClain WM, Liu G-Y. Langmuir 1996;12:3511–5.

    Article  CAS  Google Scholar 

  42. Wei Z, Wan M, Lin T, Dai L. Adv Mater 2003;15:136–9.

    Article  CAS  Google Scholar 

  43. Liang L, Liu J, Windisch CF, Exarhos GJ, Lin Y. Angew Chem Int Ed 2002;41:3665–8.

    Article  CAS  Google Scholar 

  44. Lu B, Taraporewala F, Stubbs G, Culver JN. Virology 1998;244:13–9.

    Article  CAS  Google Scholar 

  45. Lu B, Stubbs G, Culver JN. Virology 1998;248:188–98.

    Article  CAS  Google Scholar 

  46. Lu B, Stubbs G, Culver JN. Virology 1996;225:11–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Wang.

Additional information

M.A. Bruckman and Z. Niu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruckman, M.A., Niu, Z., Li, S. et al. Development of nanobiocomposite fibers by controlled assembly of rod-like tobacco mosaic virus. Nanobiotechnol 3, 31–39 (2007). https://doi.org/10.1007/s12030-007-0004-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12030-007-0004-4

Keywords

Navigation