Skip to main content

Advertisement

Log in

Integrated Analysis Identifies Novel Fusion Transcripts in Laterally Spreading Tumors Suggestive of Distinct Etiology Than Colorectal Cancers

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background

Laterally spreading tumors (LSTs) of the colon and rectum are a class of abnormality which spreads laterally and appears ulcerated. They are a subclass of colorectal cancer (CRCs) with higher invasive potential than CRCs. Moreover, the etiology of LST still remains obscure.

Methods

This study aimed to identify unique fusion transcript(s) in LSTs and evaluate their role in LST development and progression. RNA-Seq data for LST samples from the EMBL-EBI database were used to identify fusion transcripts. An integrated approach using Gene Ontology, pathway analysis, hub gene, and co-expression network analysis functionally characterized fusion transcripts to shed light upon the etiology of LSTs.

Result

We identified 48 unique fusion genes in LSTs. GO terms were enriched in mRNA metabolic (p ≤ 2.06E-06), mRNA stabilization (p ≤ 1.60E-05), in cytosol (1.20E-05), RBP (p ≤ 2.30E-04), and RNA binding activity (p ≤ 3.51E-08) processes. Pathway analysis revealed an inflammatory phenotype of LSTs suggesting a distinct etiology than CRCs as pathways were enriched in salmonella infection (p ≤ 4.41 e-03), proteoglycans in cancer (p ≤ 1.18 e-02), and insulin signaling (p ≤ 2.13 e-02). Our exclusion and inclusion criteria and hub gene analysis finally identified 9 hub genes. Co-expression analysis of hub genes identified the most significant transcription factors (NELFE, MYC, TAF1, MAX) and kinases (MAPK14, CSNK2A1, CDK1, MAPK1) which were implicated in various cancer pathways. Furthermore, an overall survival analysis of hub genes was performed. Our predefined criterion resulted in the enrichment of NPM1-PTMA (NPM1: p ≤ 0.005) and HIST1H2BO-YBX1 (YBX1: p ≤ 0.02) fusion transcripts, significantly associated with the patient’s overall survival.

Conclusion

Our systematic analysis resulted in novel fusion genes in LSTs suggesting a different etiology than CRCs. Fusion transcripts were observed more frequently in non-granular LSTs suggestive of genetically more unstable than granular LST. We hypothesize that NPM1-PTMA and HIST1H2BO-YBX1 could be implicated in LST development and progression and may also serve as a prognostic or diagnostic biomarker in future for better management of LSTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

Publicly available datasets were analyzed in this study. This data can be found here https://www.ebi.ac.uk/ena/browser/ using accession numbers SRR3147729 to SRR3147748.

References

  1. Facciorusso A, Antonino M, Di Maso M, Barone M, Muscatiello N. Non-polypoid colorectal neoplasms: Classification, therapy and follow-up: 2015 Advances in Colorectal Cancer. World J Gastroenterol World J Gastroenterol. 2015;21:5149–57.

    Article  PubMed  Google Scholar 

  2. Xu MD, Wang XY, Li QL, Zhou PH, Zhang YQ, Zhong YS, et al. Colorectal lateral spreading tumor subtypes: Clinicopathology and outcome of endoscopic submucosal dissection. Int J Colorectal Dis. 2013;28:63–72.

    Article  PubMed  Google Scholar 

  3. Oka S, Tanaka S, Kanao H, Oba S, Chayama K. Therapeutic strategy for colorectal laterally spreading tumor. Dig Endosc. John Wiley & Sons, Ltd; 2009;21:S43–6.

  4. Ishigaki T, Kudo S ei, Miyachi H, Hayashi T, Minegishi Y, Toyoshima N, et al. Treatment policy for colonic laterally spreading tumors based on each clinicopathologic feature of 4 subtypes: actual status of pseudo-depressed type. Gastrointest Endosc. American Society for Gastrointestinal Endoscopy; 2020;92:1083–1094.e6.

  5. Hesson LB, Ng B, Zarzour P, Srivastava S, Kwok CT, Packham D, et al. Integrated genetic, epigenetic, and transcriptional profiling identifies molecular pathways in the development of laterally spreading tumors. Mol Cancer Res. 2016;14:1217–28.

    Article  CAS  PubMed  Google Scholar 

  6. dos Santos CEO, Pereira-Lima JC, Onófrio F de Q. Lesões Colorretais Grandes: Avaliação e Tratamento. GE Port J Gastroenterol. Sociedade Portuguesa de Gastrenterologia; 2016;23:197–207.

  7. Myung DS, Kweon SS, Lee J, Shin IS, Kim SW, Seo GS, et al. Clinicopathological features of laterally spreading colorectal tumors and their association with advanced histology and invasiveness: An experience from Honam province of South Korea: A Honam Association for the Study of Intestinal Diseases (HASID). PLoS ONE. 2017;12:1–14.

    Article  Google Scholar 

  8. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res Nucleic Acids Res. 2019;47:W556–60.

    Article  CAS  PubMed  Google Scholar 

  9. Dallol A, Morton D, Maher ER, Latif F. SLIT2 axon guidance molecule is frequently inactivated in colorectal cancer and suppresses growth of colorectal carcinoma cells. Cancer Res. 2003;63:1054–8.

    CAS  PubMed  Google Scholar 

  10. Hiraoka S, Kato J, Tatsukawa M, Harada K, Fujita H, Morikawa T, et al. Laterally Spreading Type of Colorectal Adenoma Exhibits a Unique Methylation Phenotype and K-ras Mutations. Gastroenterology. 2006;131:379–89.

    Article  CAS  PubMed  Google Scholar 

  11. Liu J, Weng L, Ming Y, Yin B, Liu S, Wu N, et al. Fusion Genes and their Detection through Next Generation Sequencing in Malignant Hematological Disease and Solid Tumors. Diagnostic Pathol Open Access. 2016;01:1–6.

    Article  Google Scholar 

  12. Lee SJ, Li GG, Kim ST, Hong ME, Jang J, Yoon N, et al. NTRK1 rearrangement in colorectal cancer patients: Evidence for actionable target using patient-derived tumor cell line. Oncotarget. 2015;6:39028–35.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB, et al. Recurrent R-spondin fusions in colon cancer. Nature. 2012;488:660–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Milione M, Ardini E, Christiansen J, Valtorta E, Veronese S, Bosotti R, et al. Identification and characterization of a novel SCYL3-NTRK1 rearrangement in a colorectal cancer patient. Oncotarget. 2017;8:55353–60.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sartore-Bianchi A, Ardini E, Bosotti R, Amatu A, Valtorta E, Somaschini A, et al. Sensitivity to Entrectinib Associated with a Novel LMNA-NTRK1 Gene Fusion in Metastatic Colorectal Cancer. J Natl Cancer Inst. 2016;108:1–4.

    Article  Google Scholar 

  16. Kulkarni A, Al-Hraishawi H, Simhadri S, Hirshfield KM, Chen S, Pine S, et al. BRAF fusion as a novel mechanism of acquired resistance to vemurafenib in BRAFV600E mutant melanoma. Clin Cancer Res. 2017;23:5631–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kalvala A, Gao L, Aguila B, Dotts K, Rahman M, Nana-Sinkam SP, et al. Rad51C-ATXN7 fusion gene expression in colorectal tumors. Mol Cancer Molecular Cancer. 2016;15:1–9.

    Google Scholar 

  18. Haas BJ, Dobin A, Stransky N, Li B, Yang X, Tickle T, et al. STAR-Fusion: Fast and accurate fusion transcript detection from RNA-Seq. bioRxiv. 2017.

  19. Haas BJ, Dobin A, Li B, Stransky N, Pochet N, Regev A. Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods. Genome Biol. 2019;20:1–16.

    Article  CAS  Google Scholar 

  20. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res Oxford University Press. 2019;47:D607–13.

    Article  CAS  Google Scholar 

  21. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8:1–7.

    Article  Google Scholar 

  22. Li CY, Cai JH, Tsai JJP, Wang CCN. Identification of Hub Genes Associated With Development of Head and Neck Squamous Cell Carcinoma by Integrated Bioinformatics Analysis. Front Oncol. 2020;10:1–12.

    Google Scholar 

  23. Clarke DJB, Kuleshov MV, Schilder BM, Torre D, Duffy ME, Keenan AB, et al. EXpression2Kinases (X2K) Web: Linking expression signatures to upstream cell signaling networks. Nucleic Acids Res Oxford University Press. 2018;46:W171–9.

    Article  CAS  Google Scholar 

  24. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res Oxford Academic. 2017;45:W98-102.

    Article  CAS  Google Scholar 

  25. Ojima E, Inoue Y, Miki C, Mori M, Kusunoki M. Effectiveness of gene expression profiling for response prediction of rectal cancer to preoperative radiotherapy. J Gastroenterol. 2007;42:730–6.

    Article  PubMed  Google Scholar 

  26. Yu ACY, Chern YJ, Zhang P, Pasiliao CC, Rahman M, Chang G, et al. Inhibition of nucleophosmin 1 suppresses colorectal cancer tumor growth of patient -derived xenografts via activation of p53 and inhibition of AKT. Cancer Biol Ther. 2021;22:112–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Y, Song Y, Ye M, Hu X, Wang ZP, Zhu X. The emerging role of WISP proteins in tumorigenesis and cancer therapy. J Transl Med BioMed Central. 2019;17:1–14.

    Google Scholar 

  28. Tian J, Chang J, Gong J, Lou J, Fu M, Li J, et al. Systematic Functional Interrogation of Genes in GWAS Loci Identified ATF1 as a Key Driver in Colorectal Cancer Modulated by a Promoter-Enhancer Interaction. Am J Hum Genet ElsevierCompany. 2019;105:29–47.

    Article  CAS  Google Scholar 

  29. Badalamenti G, Barraco N, Incorvaia L, Galvano A, Fanale D, Cabibi D, et al. Are Long Noncoding RNAs New Potential Biomarkers in Gastrointestinal Stromal Tumors (GISTs)? The Role of H19 and MALAT1. J Oncol. 2019;2019.

  30. Li ZX, Zhu QN, Zhang HB, Hu Y, Wang G, Zhu YS. MALAT1: A potential biomarker in cancer. Cancer Manag Res. 2018;10:6757–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stein U, Burock S, Herrmann P, Wendler I, Niederstrasser M, Wernecke KD, et al. Circulating MACC1 Transcripts in Colorectal Cancer Patient Plasma Predict Metastasis and Prognosis. PLoS ONE. 2012;7:1–10.

    Article  Google Scholar 

  32. Russo A, Maiolino S, Pagliara V, Ungaro F, Tatangelo F, Leone A, et al. Enhancement of 5-FU sensitivity by the proapoptotic rpL3 gene in p53 null colon cancer cells through combined polymer nanoparticles. Oncotarget. 2016;7:79670–87.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hartley AV, Wang B, Mundade R, Jiang G, Sun M, Wei H, et al. PRMT5-mediated methylation of YBX1 regulates NF-κB activity in colorectal cancer. Sci Rep Nature Publishing Group UK. 2020;10:1–14.

    Google Scholar 

  34. Nagasu S, Sudo T, Kinugasa T, Yomoda T, Fujiyoshi K, Shigaki T, et al. Y-box-binding protein 1 inhibits apoptosis and upregulates EGFR in colon cancer. Oncol Rep Oncol Rep. 2019;41:2889–96.

    CAS  PubMed  Google Scholar 

  35. Long J, Yin Y, Guo H, Li S, Sun Y, Zeng C, et al. The mechanisms and clinical significance of PDCD4 in colorectal cancer. Gene Gene. 2019;680:59–64.

    CAS  PubMed  Google Scholar 

  36. Xiang L, Mou J, Shao B, Wei Y, Liang H, Takano N, et al. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis Nature Publishing Group. 2019;10:1–15.

    Google Scholar 

  37. Wang L, Du L, Duan W, Yan S, Xie Y, Wang C. Overexpression of long noncoding RNA NORAD in colorectal cancer associates with tumor progression. Onco Targets Ther Dove Press. 2018;11:6757–66.

    Article  CAS  Google Scholar 

  38. Pal A, Young MA, Donato NJ. Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res. American Association for Cancer Research; 2014;74:4955–66.

  39. Nome T, Thomassen GOS, Bruun J, Ahlquist T, Bakken AC, Hoff AM, et al. Common fusion transcripts identified in colorectal cancer cell lines by high-throughput RNA sequencing. Transl Oncol. 2013;6:546–53.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Azhar AM. Mucin Family Genes are Downregulated in Colorectal Cancer Patients. J Carcinog Mutagen. 2014;S10:10.

    Google Scholar 

  41. Mazzoni SM, Petty EM, Stoffel EM, Fearon ER. An AXIN2 mutant allele associated with predisposition to colorectal neoplasia has context-dependent effects on AXIN2 protein function. Neoplasia (United States). The Authors; 2015;17:463–72.

  42. Zhang J, Yan B, Späth SS, Qun H, Cornelius S, Guan D, et al. Integrated transcriptional profiling and genomic analyses reveal RPN2 and HMGB1 as promising biomarkers in colorectal cancer. Cell Biosci. 2015;5.

  43. Huynh N, Liu KH, Baldwin GS, He H. P21-activated kinase 1 stimulates colon cancer cell growth and migration/invasion via ERK- and AKT-dependent pathways. Biochim Biophys Acta - Mol Cell Res. Biochim Biophys Acta; 2010;1803:1106–13.

  44. Rocha MR, Barcellos-de-Souza P, Sousa-Squiavinato ACM, Fernandes PV, de Oliveira IM, Boroni M, et al. Annexin A2 overexpression associates with colorectal cancer invasiveness and TGF-ß induced epithelial mesenchymal transition via Src/ANXA2/STAT3. Sci Rep Nature Publishing Group. 2018;8:1–11.

    Google Scholar 

  45. Mastrogamvraki N, Zaravinos A. Signatures of co-deregulated genes and their transcriptional regulators in colorectal cancer. npj Syst Biol Appl. Nature Publishing Group; 2020;6:1–16.

  46. Li Z, Tognon CE, Godinho FJ, Yasaitis L, Hock H, Herschkowitz JI, et al. ETV6-NTRK3 Fusion Oncogene Initiates Breast Cancer from Committed Mammary Progenitors via Activation of AP1 Complex. Cancer Cell. 2007;12:542–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2:367–76.

    Article  CAS  PubMed  Google Scholar 

  48. Kasaian K, Wiseman SM, Walker BA, Schein JE, Zhao Y, Hirst M, et al. The genomic and transcriptomic landscape of anaplastic thyroid cancer: Implications for therapy. BMC Cancer BMC Cancer. 2015;15:1–11.

    Google Scholar 

  49. Parker BC, Engels M, Annala M, Zhang W. Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid tumours. J Pathol. 2014;232:4–15.

    Article  CAS  PubMed  Google Scholar 

  50. De Luca A, Abate RE, Rachiglio AM, Maiello MR, Esposito C, Schettino C, et al. FGFR fusions in cancer: From diagnostic approaches to therapeutic intervention. Int J Mol Sci. 2020;21:1–18.

    Google Scholar 

  51. Demichelis F, Rubin MA. TMPRSS2-ETS fusion prostate cancer: Biological and clinical implications. J Clin Pathol. 2007;60:1185–6.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 2013;3:636–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sabir SR, Yeoh S, Jackson G, Bayliss R. EML4-ALK variants: Biological and molecular properties, and the implications for patients. Cancers (Basel). 2017;9.

  54. Martelli MP, Sozzi G, Hernandez L, Pettirossi V, Navarro A, Conte D, et al. EML4-ALK rearrangement in non-small cell lung cancer and non-tumor lung tissues. Am J Pathol. 2009;174:661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cai W, Li X, Su C, Fan L, Zheng L, Fei K, et al. ROS1 fusions in Chinese patients with non-small-cell lung cancer. Ann Oncol. 2013;24:1822–7.

    Article  CAS  PubMed  Google Scholar 

  56. Cong XF, Yang L, Chen C, Liu Z. KIF5B-ret fusion gene and its correlation with clinicopathological and prognostic features in lung cancer: A meta-analysis. Onco Targets Ther. 2019;12:4533–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Salzman J, Marinelli RJ, Wang PL, Green AE, Nielsen JS, Nelson BH, et al. ESRRA-C11orf20 is a recurrent gene fusion in serous ovarian carcinoma. PLoS Biol. 2011;9:1–9.

    Article  Google Scholar 

  58. Micci F, Panagopoulos I, Thorsen J, Davidson B, Tropé CG, Heim S. Low Frequency of ESRRA-C11orf20 Fusion Gene in Ovarian Carcinomas. PLoS Biol. 2014;12:11–3.

    Article  Google Scholar 

  59. Berrino E, Bragoni A, Annaratone L, Fenocchio E, Carnevale-Schianca F, Garetto L, et al. Pursuit of gene fusions in daily practice: evidence from real-world data in wild-type and microsatellite instable patients. Cancers (Basel). 2021;13:1–17.

    Article  Google Scholar 

  60. Pagani F, Randon G, Guarini V, Raimondi A, Prisciandaro M, Lobefaro R, et al. The landscape of actionable gene fusions in colorectal cancer. Int J Mol Sci. 2019;20.

  61. Sugimoto T, Ohta M, Ikenoue T, Yamada A, Tada M, Fujishiro M, et al. Macroscopic morphologic subtypes of laterally spreading colorectal tumors showing distinct molecular alterations. Int J Cancer. 2010;127:1562–9.

    Article  CAS  PubMed  Google Scholar 

  62. Li CY, Cai JH, Tsai JJP, Wang CCN. Identification of Hub Genes Associated With Development of Head and Neck Squamous Cell Carcinoma by Integrated Bioinformatics Analysis. Front Oncol. 2020;10:681.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gupta V, Crudu A, Matsuoka Y, Ghosh S, Rozot R, Marat X, et al. Multi-dimensional computational pipeline for large-scale deep screening of compound effect assessment: an in silico case study on ageing-related compounds. npj Syst Biol Appl. Springer US; 2019;5:1–10.

  64. He WL, Weng XT, Wang JL, Lin YK, Liu TW, Zhou QY, et al. Association between c-Myc and colorectal cancer prognosis: A meta-analysis. Front Physiol. Frontiers Media SA; 2018;9.

  65. Strippoli A, Cocomazzi A, Basso M, Cenci T, Ricci R, Pierconti F, et al. C-myc expression is a possible keystone in the colorectal cancer resistance to egfr inhibitors. Cancers (Basel). Multidisciplinary Digital Publishing Institute (MDPI); 2020;12.

  66. Lee KS, Kwak Y, Nam KH, Kim DW, Kang SB, Choe G, et al. C-MYC copy-number gain is an independent prognostic factor in patients with colorectal cancer. PLoS One. Public Library of Science; 2015;10:e0139727.

  67. Lee KS, Kwak Y, Nam KH, Kim DW, Kang SB, Choe G, et al. Favorable prognosis in colorectal cancer patients with co-expression of c-MYC and ß-catenin. BMC Cancer. 2016;16.

  68. Hsu KS, Kao HY. PML: Regulation and multifaceted function beyond tumor suppression. Cell Biosci BioMed Central. 2018;8:1–21.

    Google Scholar 

  69. Satow R, Shitashige M, Jigami T, Fukami K, Honda K, Kitabayashi I, et al. Β-Catenin Inhibits Promyelocytic Leukemia Protein Tumor Suppressor Function in Colorectal Cancer Cells. Gastroenterology Gastroenterology. 2012;142:572–81.

    Article  CAS  PubMed  Google Scholar 

  70. Boudjadi S, Beaulieu JF. MYC and integrins interplay in colorectal cancer. Oncoscience. Impact Journals, LLC; 2016;3:50–1.

  71. Cascoń A, Robledo M. MAX and MYC: A heritable breakup. Cancer Res. American Association for Cancer Research; 2012;72:3119–24.

  72. Lu W, Yang C, He H, Liu H. The CARM1-p300-c-Myc-Max (CPCM) transcriptional complex regulates the expression of CUL4A/4B and affects the stability of CRL4 E3 ligases in colorectal cancer. Int J Biol Sci. Ivyspring International Publisher; 2020;16:1071–85.

  73. Rahner N, Brockschmidt FF, Steinke V, Kahl P, Becker T, Vasen HFA, et al. Mutation and association analyses of the candidate genes ESR1, ESR2, MAX, PCNA, and KAT2A in patients with unexplained MSH2-deficient tumors. Fam Cancer. 2012;11:19–26.

    Article  CAS  PubMed  Google Scholar 

  74. Khare V, Tabassum S, Chatterjee U, Chatterjee S, Ghosh MK. RNA helicase p68 deploys β-catenin in regulating RelA/p65 gene expression: Implications in colon cancer. J Exp Clin Cancer Res. BioMed Central; 2019;38:1–19.

  75. Witte KE, Pfitzenmaier J, Storm J, Lütkemeyer M, Wimmer C, Schulten W, et al. Analysis of several pathways for efficient killing of prostate cancer stem cells: A central role of nf-κb rela. Int J Mol Sci. Multidisciplinary Digital Publishing Institute; 2021;22:8901.

  76. Li D, Beisswenger C, Herr C, Hellberg J, Han G, Zakharkina T, et al. Myeloid cell RelA/p65 promotes lung cancer proliferation through Wnt/β-catenin signaling in murine and human tumor cells. Oncogene Nature Publishing Group. 2014;33:1239–48.

    Google Scholar 

  77. Kim GC, Kwon HK, Lee CG, Verma R, Rudra D, Kim T, et al. Upregulation of Ets1 expression by NFATc2 and NFKB1/RELA promotes breast cancer cell invasiveness. Oncogenesis Nature Publishing Group. 2018;7:1–15.

    Google Scholar 

  78. Weichert W, Boehm M, Gekeler V, Bahra M, Langrehr J, Neuhaus P, et al. High expression of RelA/p65 is associated with activation of nuclear factor-κB-dependent signaling in pancreatic cancer and marks a patient population with poor prognosis. Br J Cancer Nature Publishing Group. 2007;97:523–30.

    CAS  Google Scholar 

  79. Shah M, Rennoll SA, Raup-Konsavage WM, Yochum GS. A dynamic exchange of TCF3 and TCF4 transcription factors controls MYC expression in colorectal cancer cells. Cell Cycle Taylor & Francis. 2015;14:323–32.

    Article  CAS  Google Scholar 

  80. Li C, Cai S, Wang X, Jiang Z. Hypomethylation-associated up-regulation of TCF3 expression and recurrence in stage II and III colorectal cancer. PLoS One. Public Library of Science; 2014;9:e112005.

  81. Li HH, Li AG, Sheppard HM, Liu X. Phosphorylation on Thr-55 by TAF1 mediates degradation of p53: A role for TAF1 in cell G1 progression. Mol Cell Cell Press. 2004;13:867–78.

    Article  CAS  Google Scholar 

  82. Severson PL, Vrba L, Stampfer MR, Futscher BW. Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res - Genet Toxicol Environ Mutagen. Elsevier B.V.; 2014;775–776:48–54.

  83. Oh HR, An CH, Yoo NJ, Lee SH. Frameshift Mutations in the Mononucleotide Repeats of TAF1 and TAF1L Genes in Gastric and Colorectal Cancers with Regional Heterogeneity. Pathol Oncol Res Pathol Oncol Res. 2017;23:125–30.

    Article  CAS  PubMed  Google Scholar 

  84. Le GM, Rudd ML, Urick ME, Hansen NF, Zhang S, Comparative N, et al. HHS Public Access. 2018;123:3261–8.

    Google Scholar 

  85. Han L, Zan Y, Zhang S, Huang C. NELFE promoted pancreatic cancer metastasis and the epithelial-to-mesenchymal transition by decreasing the stabilization of NDRG2 mRNA. Int J Oncol Spandidos Publications. 2019;55:1313–23.

    CAS  Google Scholar 

  86. Wong JCT, Hasan MR, Rahman M, Yu AC, Chan SK, Schaeffer DF, et al. Nucleophosmin 1, upregulated in adenomas and cancers of the colon, inhibits p53-mediated cellular senescence. Int J Cancer. 2013;133:1567–77.

    Article  CAS  PubMed  Google Scholar 

  87. Yang Z, Qiao L, Chao Y, Liu J, Di Y, Sun J, et al. High expression of nucleophosmin is closely related to the grade and invasion of colorectal cancer. Indian J Biochem Biophys. 2019;56:420–6.

    CAS  Google Scholar 

  88. Zhang M, Cui F, Lu S, Lu H, Jiang T, Chen J, et al. Increased expression of prothymosin-α, independently or combined with TP53, correlates with poor prognosis in colorectal cancer. Int J Clin Exp Pathol. 2014;7:4867–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kim A, Shim S, Kim YH, Kim MJ, Park S, Myung JK. Inhibition of Y box binding protein 1 suppresses cell growth and motility in colorectal cancer. Mol Cancer Ther. 2020;19:479–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Sandhya Rai and Manish Pratap Singh performed material preparation, data collection, and analysis. Sandhya Rai wrote the first draft of the manuscript. Sameer Srivastava and Manish Pratap Singh reviewed and commented on the preceding paper. Sameer Srivastava did the framing and critical review of the manuscript. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to Sameer Srivastava.

Ethics declarations

Human and Animal Rights and Informed Consent

No studies with human participants were done by any of the authors in this article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Laterally spreading tumors (LSTs) of the colon and rectum are a class of abnormality which spreads laterally appears ulcerated and may have higher malignant potential.

• Novel fusion genes identified in LSTs are suggestive of distinct etiology than CRCs.

• NPM1-PTMA (NPM1: p ≤ 0.005) and HIST1H2BO-YBX1 (YBX1: p ≤ 0.02) fusion transcripts were found to be, significantly associated with the patient’s overall survival and, therefore, could serve as a prognostic or diagnostic biomarker in future for better management of LSTs.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, S., Singh, M.P. & Srivastava, S. Integrated Analysis Identifies Novel Fusion Transcripts in Laterally Spreading Tumors Suggestive of Distinct Etiology Than Colorectal Cancers. J Gastrointest Canc 54, 913–926 (2023). https://doi.org/10.1007/s12029-022-00881-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-022-00881-5

Keywords

Navigation