Skip to main content

Advertisement

Log in

Identification of Novel Biomarkers for Response to Preoperative Chemoradiation in Locally Advanced Rectal Cancer with Genetic Algorithm–Based Gene Selection

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background

The conventional treatment for patients with locally advanced colorectal tumors is preoperative chemo-radiotherapy (PCRT) preceding surgery. This treatment strategy has some long-term side effects, and some patients do not respond to it. Therefore, an evaluation of biomarkers that may help predict patients’ response to PCRT is essential.

Methods

We took advantage of genetic algorithm to search the space of possible combinations of features to choose subsets of genes that would yield convenient performance in differentiating PCRT responders from non-responders using a logistic regression model as our classifier.

Results

We developed two gene signatures; first, to achieve the maximum prediction accuracy, the algorithm yielded 39 genes, and then, aiming to reduce the feature numbers as much as possible (while maintaining acceptable performance), a 5-gene signature was chosen. The performance of the two gene signatures was (accuracy = 0.97 and 0.81, sensitivity = 0.96 and 0.83, and specificity = 86 and 0.77) using a logistic regression classifier. Through analyzing bias and variance decomposition of the model error, we further investigated the involved genes by discovering and validating another 28-gene signature which possibly points towards two different sub-systems involved in the response of the patients to treatment.

Conclusions

Using genetic algorithm as our gene selection method, we have identified two groups of genes that can differentiate PCRT responders from non-responders in patients of the studied dataset with considerable performance.

Impact

After passing standard requirements, our gene signatures may be applicable as a robust and effective PCRT response prediction tool for colorectal cancer patients in clinical settings and may also help future studies aiming to further investigate involved pathways gain a clearer picture for the course of their research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Patel JN, Fong MK, Jagosky M. Colorectal cancer biomarkers in the era of personalized medicine. J Pers Med. 2019;9(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  CAS  PubMed  Google Scholar 

  3. Landmann RG, Weiser MR. Surgical management of locally advanced and locally recurrent colon cancer. Clin Colon Rectal Surg. 2005;18(3):182.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eriksen AHM, Sørensen FB, Andersen RF, Jakobsen A, Hansen TF. Association between the expression of microRNAs and the response of patients with locally advanced rectal cancer to preoperative chemoradiotherapy. Oncol Lett. 2017;14(1):201–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hasan Abdali M, Afshar S, Sedighi Pashaki A, Dastan D, Gholami MH, Mahmoudi R, et al. Investigating the effect of radiosensitizer for Ursolic Acid and Kamolonol Acetate ‌on HCT-116 cell line. Bioorg Med Chem. 2020;28(1):115152.

    Article  CAS  PubMed  Google Scholar 

  6. Palma P, Cano C, Conde-Muiño R, Comino A, Bueno P, Ferrón JA, et al. Expression profiling of rectal tumors defines response to neoadjuvant treatment related genes. PLoS ONE. 2014;9(11): e112189.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Millino C, Maretto I, Pacchioni B, Digito M, De Paoli A, Canzonieri V, et al. Gene and microRNA expression are predictive of tumor response in rectal adenocarcinoma patients treated with preoperative chemoradiotherapy. J Cell Physiol. 2017;232(2):426–35.

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Liu J, Wang D, Feng M, Wu X. Epigenetically regulated gene expression profiles reveal four molecular subtypes with prognostic and therapeutic implications in colorectal cancer. Brief Bioinform. 2020.

  9. Chang Y-T, Yao C-T, Su S-L, Chou Y-C, Chu C-M, Huang C-S, et al. Verification of gene expression profiles for colorectal cancer using 12 internet public microarray datasets. World J Gastroenterol: WJG. 2014;20(46):17476.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kuremsky JG, Tepper JE, McLeod HL. Biomarkers for response to neoadjuvant chemoradiation for rectal cancer. Int J Radiat Oncol Biol Phys. 2009;74(3):673–88.

  11. Han M, Liew CT, Zhang HW, Chao S, Zheng R, Yip KT, et al. Novel blood-based, five-gene biomarker set for the detection of colorectal cancer. Clin Cancer Res. 2008;14(2):455–60.

    Article  CAS  PubMed  Google Scholar 

  12. Lee Y-C, Hsieh C-C, Chuang J-P. Prognostic significance of partial tumor regression after preoperative chemoradiotherapy for rectal cancer: a meta-analysis. Dis Colon Rectum. 2013;56(9):1093–101.

    Article  PubMed  Google Scholar 

  13. Nikolouzakis TK, Vassilopoulou L, Fragkiadaki P, Mariolis Sapsakos T, Papadakis GZ, Spandidos DA, et al. Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients. Oncol Rep. 2018;39(6):2455–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Afshar S, Sedighi Pashaki A, Najafi R, Nikzad S, Amini R, Shabab N, et al. Cross-Resistance of Acquired Radioresistant Colorectal Cancer Cell Line to gefitinib and regorafenib. Iran J Med Sci. 2020;45(1):50–8.

    PubMed  Google Scholar 

  15. Zhang X, Sun X-F, Shen B, Zhang H. Potential applications of DNA, RNA and protein biomarkers in diagnosis, therapy and prognosis for colorectal cancer: a study from databases to AI-assisted verification. Cancers. 2019;11(2):172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Verma M, Kumar V. Epigenetic biomarkers in colorectal cancer. Mol Diagn Ther. 2017;21(2):153–65.

    Article  CAS  PubMed  Google Scholar 

  17. Ghadimi BM, Grade M, Difilippantonio MJ, Varma S, Simon R, Montagna C, et al. Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol: Official J Am Soc Clin Oncol. 2005;23(9):1826.

    Article  CAS  Google Scholar 

  18. Gantt GA, Chen Y, Dejulius K, Mace AG, Barnholtz-Sloan J, Kalady MF. Gene expression profile is associated with chemoradiation resistance in rectal cancer. Colorectal Dis. 2014;16(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  19. Park IJ, Yu YS, Mustafa B, Park JY, Seo YB, Kim G-D, et al. A Nine-Gene Signature for Predicting the Response to Preoperative Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer. Cancers. 2020;12(4):800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vieira SM, Mendonça LF, Farinha GJ, Sousa JMC. Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients. Appl Soft Comput. 2013;13(8):3494–504.

    Article  Google Scholar 

  21. Chicco D, Jurman G. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Med Inform Decis Mak. 2020;20(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Afshar S, Afshar S, Warden E, Manochehri H, Saidijam M. Application of Artificial Neural Network in miRNA Biomarker Selection and Precise Diagnosis of Colorectal Cancer. IBJ. 2019;23(3):175–83.

    Article  PubMed  PubMed Central  Google Scholar 

  23. El Akadi A, Amine A, El Ouardighi A, Aboutajdine D. A two-stage gene selection scheme utilizing MRMR filter and GA wrapper. Knowl Inf Syst. 2011;26(3):487–500.

    Article  Google Scholar 

  24. Bellman R. Dynamic programming princeton university press princeton. princeton university press, New Jersey. 1957.

  25. Duda RO, Hart PE. DG Stork Pattern Classification. John Wiely and Sons. 2001.

  26. Hira ZM, Gillies DF. A review of feature selection and feature extraction methods applied on microarray data. Adv Bioinform. 2015;2015.

  27. Torkkola K. Feature extraction by non-parametric mutual information maximization. J Mach Learn Res. 2003;3:1415–38.

  28. Bermingham ML, Pong-Wong R, Spiliopoulou A, Hayward C, Rudan I, Campbell H, et al. Application of high-dimensional feature selection: evaluation for genomic prediction in man. Sci Rep. 2015;5(1):1–12.

    Article  Google Scholar 

  29. Hughes G. On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory. 1968;14(1):55–63.

    Article  Google Scholar 

  30. Mahendran N, Vincent PMDR, Srinivasan K, Chang C-Y. Machine Learning Based Computational Gene Selection Models: A Survey, Performance Evaluation, Open Issues, and Future Research Directions. Front Genet. 2020;11.

  31. Dashtban M, Balafar M. Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts. Genomics. 2017;109(2):91–107.

    Article  CAS  PubMed  Google Scholar 

  32. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157–82.

  33. Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, et al. Feature selection: A data perspective. ACM Computing Surveys (CSUR). 2017;50(6):1–45.

    Article  Google Scholar 

  34. Gu Q, Li Z, Han J. Generalized fisher score for feature selection. arXiv:12023725 [Preprint]. 2012.

  35. Chuang L-Y, Chang H-W, Tu C-J, Yang C-H. Improved binary PSO for feature selection using gene expression data. Comput Biol Chem. 2008;32(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  36. Mandard AM, Dalibard F, Mandard JC, Marnay J, Henry-Amar M, Petiot JF, et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations Cancer. 1994;73(11):2680–6.

    CAS  PubMed  Google Scholar 

  37. Sammut C, Webb GI. Encyclopedia of machine learning: Springer Science & Business Media; 2011.

  38. Van Rossum G, Drake Jr FL. Python reference manual: Centrum voor Wiskunde en Informatica Amsterdam; 1995.

  39. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array programming with NumPy. Nature. 2020;585(7825):357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McKinney W. Data structures for statistical computing in python. 2010. Austin, TX.

  41. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

  42. Fortin F-A, De Rainville F-M, Gardner M-AG, Parizeau M, Gagné C. DEAP: Evolutionary algorithms made easy. J Mach Learn Res. 2012;13(1):2171–5.

  43. Hunter JD. Matplotlib: A 2D graphics environment. IEEE Ann Hist Comput. 2007;9(03):90–5.

    Google Scholar 

  44. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261–72.

  45. Alba E, Garcia-Nieto J, Jourdan L, Talbi E-G. Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. 2007. IEEE.

  46. Yuan L, Zhao Z-D. A modified binary particle swarm optimization algorithm for permutation flow shop problem 2007. IEEE.

  47. Loughrey J, Cunningham P. Overfitting in wrapper-based feature subset selection: The harder you try the worse it gets. International Conference on Innovative Techniques and Applications of Artificial Intelligence. 2004. Springer.

  48. Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44.

    Article  PubMed  Google Scholar 

  49. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.

    Article  PubMed  Google Scholar 

  50. Von Luxburg U, Schölkopf B. Statistical learning theory: Models, concepts, and results. Handbook of the History of Logic. Elsevier; 2011;10:651–706.

  51. Dietterich TG, Kong EB. Machine learning bias, statistical bias, and statistical variance of decision tree algorithms. Citeseer; 1995.

  52. Landy SD, Szalay AS. Bias and variance of angular correlation functions. Astrophys J. 1993;412:64–71.

    Article  Google Scholar 

  53. Zuo S, Dai G, Ren X. Identification of a 6-gene signature predicting prognosis for colorectal cancer. Cancer Cell Int. 2019;19(1):1–15.

    Article  Google Scholar 

  54. Willett CG, Chang DT, Czito BG, Meyer J, Wo J. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012.(5). Int J Radiat Oncol Biol Phys. 2013;86(1).

  55. Pectasides E, Bass AJ. ERBB2 emerges as a new target for colorectal cancer. Cancer Discov. 2015;5(8):799–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D, Isella C, et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 2011;1(6):508–23.

    Article  CAS  PubMed  Google Scholar 

  57. Siravegna G, Sartore-Bianchi A, Nagy RJ, Raghav K, Odegaard JI, Lanman RB, et al. Plasma HER2 (ERBB2) copy number predicts response to HER2-targeted therapy in metastatic colorectal cancer. Clin Cancer Res. 2019;25(10):3046–53.

    Article  CAS  PubMed  Google Scholar 

  58. Tanaka A, Zhou Y, Ogawa M, Shia J, Klimstra DS, Wang JY, et al. STAT1 as a potential prognosis marker for poor outcomes of early stage colorectal cancer with microsatellite instability. PLoS ONE. 2020;15(4): e0229252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mager LF, Wasmer M-H, Rau TT, Krebs P. Cytokine-induced modulation of colorectal cancer. Front Oncol. 2016;6:96.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Marshall KW, Mohr S, Khettabi FE, Nossova N, Chao S, Bao W, et al. A blood-based biomarker panel for stratifying current risk for colorectal cancer. Int J Cancer. 2010;126(5):1177–86.

    Article  CAS  PubMed  Google Scholar 

  61. Larraguibel J, Weiss ARE, Pasula DJ, Dhaliwal RS, Kondra R, Van Raay TJ. Wnt ligand–dependent activation of the negative feedback regulator Nkd1. Mol Biol Cell. 2015;26(12):2375–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guo J, Cagatay T, Zhou G, Chan C-C, Blythe S, Suyama K, et al. Mutations in the human naked cuticle homolog NKD1 found in colorectal cancer alter Wnt/Dvl/β-catenin signaling. PLoS ONE. 2009;4(11): e7982.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yan D, Wallingford JB, Sun T-Q, Nelson AM, Sakanaka C, Reinhard C, et al. Cell autonomous regulation of multiple Dishevelled-dependent pathways by mammalian Nkd. Proc Natl Acad Sci. 2001;98(7):3802–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Waaler J, Machon O, von Kries JP, Wilson SR, Lundenes E, Wedlich D, et al. Novel synthetic antagonists of canonical Wnt signaling inhibit colorectal cancer cell growth. Can Res. 2011;71(1):197–205.

    Article  CAS  Google Scholar 

  65. Barker N, Ridgway RA, Van Es JH, Van De Wetering M, Begthel H, Van Den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457(7229):608–11.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang Q, Wei T, Shim K, Wright K, Xu K, Palka-Hamblin HL, et al. Atypical role of sprouty in colorectal cancer: sprouty repression inhibits epithelial–mesenchymal transition. Oncogene. 2016;35(24):3151–62.

    Article  CAS  PubMed  Google Scholar 

  67. Soleimani A, Rahmani F, Saeedi N, Ghaffarian R, Khazaei M, Ferns GA, et al. The potential role of regulatory microRNAs of RAS/MAPK signaling pathway in the pathogenesis of colorectal cancer. J Cell Biochem. 2019;120(12):19245–53.

    Article  CAS  PubMed  Google Scholar 

  68. Mitin N, Rossman KL, Der CJ. Signaling interplay in Ras superfamily function. Curr Biol. 2005;15(14):R563–74.

    Article  CAS  PubMed  Google Scholar 

  69. Zenonos K, Kyprianou K. RAS signaling pathways, mutations and their role in colorectal cancer. World J Gastrointest Oncol. 2013;5(5):97.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bahrami A, Hassanian SM, ShahidSales S, Farjami Z, Hasanzadeh M, Anvari K, et al. Targeting RAS signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J Cell Physiol. 2018;233(3):2058–66.

    Article  CAS  PubMed  Google Scholar 

  71. Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2015;1855(1):104–21.

  72. Zhang Y-L, Wang R-C, Cheng K, Ring BZ, Su L. Roles of Rap1 signaling in tumor cell migration and invasion. Cancer Biol Med. 2017;14(1):90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Anuja K, Kar M, Chowdhury AR, Shankar G, Padhi S, Roy S, et al. Role of telomeric RAP1 in radiation sensitivity modulation and its interaction with CSC marker KLF4 in colorectal cancer. Int J Radiat Biol. 2020;96(6):790–802.

    Article  CAS  PubMed  Google Scholar 

  74. Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S, Kostakis A, Nikiteas N, Papavassiliou AG. TGF-beta signalling in colon carcinogenesis. Cancer Lett. 2012;314(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  75. Bellam N, Pasche B. TGF-β signaling alterations and colon cancer. Cancer Genet. 2010:85–103.

  76. Itatani Y, Kawada K, Sakai Y. Transforming growth factor-β signaling pathway in colorectal cancer and its tumor microenvironment. Int J Mol Sci. 2019;20(23):5822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Spano J-P, Milano G, Rixe C, Fagard R. JAK/STAT signalling pathway in colorectal cancer: a new biological target with therapeutic implications. Eur J Cancer. 2006;42(16):2668–70.

    Article  CAS  PubMed  Google Scholar 

  78. Slattery ML, Lundgreen A, Kadlubar SA, Bondurant KL, Wolff RK. JAK/STAT/SOCS-signaling pathway and colon and rectal cancer. Mol Carcinog. 2013;52(2):155–66.

    Article  PubMed  Google Scholar 

  79. West NR, McCuaig S, Franchini F, Powrie F. Emerging cytokine networks in colorectal cancer. Nat Rev Immunol. 2015;15(10):615–29.

    Article  CAS  PubMed  Google Scholar 

  80. Stokes T, Steele R, Shrier I. Causal Simulation Experiments: Lessons from Bias Amplification. arXiv:200308449 [Preprint]. 2020.

Download references

Acknowledgements

This study has been adapted from the M.Sc. thesis of the first author at Bu-Ali Sina University, Hamadan, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, N.M. and S.A. Methodology, N.M., S.A., and M.G.Z. Software, N.M. Data curation, N.M. Validation, N.M., S.A., and M.G.Z. Formal analysis, N.M. and S.A. Writing—original draft, N.M. Visualization, N.M. Writing—review and editing, M.G.Z., S.A., and M.H. Project administration, S.A. Supervision, M.G.Z. and M.H. Resources, S.A.

Corresponding author

Correspondence to Saeid Afshar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34.1 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohseni, N., Ghaniee Zarich, M., Afshar, S. et al. Identification of Novel Biomarkers for Response to Preoperative Chemoradiation in Locally Advanced Rectal Cancer with Genetic Algorithm–Based Gene Selection. J Gastrointest Canc 54, 937–950 (2023). https://doi.org/10.1007/s12029-022-00873-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-022-00873-5

Keywords

Navigation