Skip to main content

Advertisement

Log in

Could Signal Transducer and Activator of Transcription 3 be a Therapeutic Target in Obesity-Related Gastrointestinal Malignancy?

  • Review Article
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Introduction

A large body of evidence has implicated the signal transducer and activator of transcription (STAT) family and particularly the ubiquitously expressed STAT3 protein in the pathogenesis of colorectal, hepatocellular, gastric and pancreatic carcinoma.

Discussion

Concomitantly, an increasing body of epidemiological evidence has linked obesity and its associated pro-inflammatory state with the development of gastrointestinal cancers. Visceral adipose tissue is no longer considered inert and is known to secrete a number of adipocytokines such as leptin, interleukin (IL)-6, IL-8, IL-1β and tumour necrosis factor-alpha (TNF-α) into the surrounding environment. Interestingly, these adipocytokines are strongly linked with the Janus kinase (JAK)/STAT pathway of signal transduction and there is experimental evidence linking IL-1β, IL-8 and TNF-α to JAK/STAT signaling in other tissues. The result is an up-regulation of a wide range of anti-apoptotic, pro-metastatic and pro-angiogenic genes and processes. This is particularly relevant for gastrointestinal malignancy as these factors have the potential to signal adjacent endothelial cells in a paracrine manner.

Conclusion

This review examines the potential role of the STAT3 signaling pathway in the pathogenesis of obesity-related gastrointestinal malignancy and the potential therapeutic role of STAT3 blockade given its status as a signaling hub for a number of inflammatory adipocytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C and Parkin DM (2020), “GLOBOCAN 2008 v2.0. Cancer incidence and mortality worldwide: IARC CancerBase No. 10”, Lyon, France: International Agency for Research on Cancer; 2010.

  2. Kaidar-Person O, Bar-Sela G, Person B. The two major epidemics of the twenty-first century: obesity and cancer. Obes Surg. 2011;21(11):1792–7.

    PubMed  Google Scholar 

  3. Reeves GK et al. Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ. 2007;335(7630):1134.

    PubMed Central  PubMed  Google Scholar 

  4. Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc. 2008;67(3):253–6.

    PubMed  Google Scholar 

  5. Yu H, Jove R. The STATs of cancer—new molecular targets come of age. Nature Rev Cancer. 2004;4(2):97–105.

    CAS  Google Scholar 

  6. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Rev Cancer. 2009;9(11):798–809.

    CAS  Google Scholar 

  7. Darnell Jr JE, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264(5164):1415–21.

    CAS  PubMed  Google Scholar 

  8. Stark GR et al. How cells respond to interferons. Annu Rev Biochem. 1998;67:227–64.

    CAS  PubMed  Google Scholar 

  9. Lim CP, Cao X. Structure, function, and regulation of STAT proteins. Mol BioSyst. 2006;2(11):536–50.

    CAS  PubMed  Google Scholar 

  10. Mao X et al. Structural bases of unphosphorylated STAT1 association and receptor binding. Mol Cell. 2005;17(6):761–71.

    CAS  PubMed  Google Scholar 

  11. Xu X, Sun YL, Hoey T. Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science. 1996;273(5276):794–7.

    CAS  PubMed  Google Scholar 

  12. Becker S, Groner B, Muller CW. Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature. 1998;394(6689):145–51.

    CAS  PubMed  Google Scholar 

  13. Schindler C, Strehlow I. Cytokines and STAT signaling. Adv Pharmacol. 2000;47:113–74.

    CAS  PubMed  Google Scholar 

  14. Leonard WJ, O'Shea JJ. Jaks and STATs: biological implications. Ann Rev Immunol. 1998;16:293–322.

    CAS  Google Scholar 

  15. Lin JX et al. The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity. 1995;2(4):331–9.

    CAS  PubMed  Google Scholar 

  16. Meraz MA et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell. 1996;84(3):431–42.

    CAS  PubMed  Google Scholar 

  17. Kiu H, Nicholson SE. Biology and significance of the JAK/STAT signalling pathways. Growth Factors. 2012;30(2):88–106.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Kisseleva T et al. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002;285(1–2):1–24.

    CAS  PubMed  Google Scholar 

  19. Schindler C, Darnell Jr JE. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Ann Rev Biochem. 1995;64:621–51.

    CAS  PubMed  Google Scholar 

  20. Starr R, Hilton DJ. Negative regulation of the JAK/STAT pathway. BioEssays: news and reviews in molecular. Cell Dev Biol. 1999;21(1):47–52.

    CAS  Google Scholar 

  21. Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;282(28):20059–63.

    CAS  PubMed  Google Scholar 

  22. Mantovani A et al. Cancer-related inflammation. Nature. 2008;454(7203):436–44.

    CAS  PubMed  Google Scholar 

  23. Prigge JR, Schmidt EE. Interaction of protein inhibitor of activated STAT (PIAS) proteins with the TATA-binding protein, TBP. J Biol Chem. 2006;281(18):12260–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Chung CD et al. Specific inhibition of Stat3 signal transduction by PIAS3. Science. 1997;278(5344):1803–5.

    CAS  PubMed  Google Scholar 

  25. Jarnicki A, Putoczki T, Ernst M. Stat3: linking inflammation to epithelial cancer—more than a “gut” feeling? Cell Div. 2010;5:14.

    PubMed Central  PubMed  Google Scholar 

  26. Wegenka UM et al. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol. 1993;13(1):276–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Zhong Z, Wen Z, Darnell Jr JE. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 1994;264(5155):95–8.

    CAS  PubMed  Google Scholar 

  28. Cheon H, Yang J, Stark GR. The functions of signal transducers and activators of transcriptions 1 and 3 as cytokine-inducible proteins. J Interferon Cytokine Res. 2011;31(1):33–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45.

    CAS  PubMed  Google Scholar 

  30. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21(1):11–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007;7(1):41–51.

    CAS  PubMed  Google Scholar 

  32. Lee H et al. Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell. 2009;15(4):283–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Ogura H et al. Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity. 2008;29(4):628–36.

    CAS  PubMed  Google Scholar 

  34. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    CAS  PubMed  Google Scholar 

  35. Ernst M, Putoczki TL. Stat3: linking inflammation to (gastrointestinal) tumourigenesis. Clin Exp Pharmacol Physiol. 2012;39(8):711–8.

    CAS  PubMed  Google Scholar 

  36. Turkson J et al. Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol Cell Biol. 1998;18(5):2545–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Caldenhoven E et al. STAT3beta, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription. J Biol Chem. 1996;271(22):13221–7.

    CAS  PubMed  Google Scholar 

  38. Bromberg JF et al. Stat3 as an oncogene. Cell. 1999;98(3):295–303.

    CAS  PubMed  Google Scholar 

  39. Niu G et al. Gene therapy with dominant-negative Stat3 suppresses growth of the murine melanoma B16 tumor in vivo. Cancer Res. 1999;59(20):5059–63.

    CAS  PubMed  Google Scholar 

  40. Catlett-Falcone R et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity. 1999;10(1):105–15.

    CAS  PubMed  Google Scholar 

  41. Chai SK, Nichols GL, Rothman P. Constitutive activation of JAKs and STATs in BCR-Abl-expressing cell lines and peripheral blood cells derived from leukemic patients. J Immunol. 1997;159(10):4720–8.

    CAS  PubMed  Google Scholar 

  42. Fernandes A, Hamburger AW, Gerwin BI. ErbB-2 kinase is required for constitutive stat 3 activation in malignant human lung epithelial cells. Int J Cancer. 1999;83(4):564–70.

    CAS  PubMed  Google Scholar 

  43. Garcia R et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast a. carcinoma cells. Oncogene. 2001;20(20):2499–513.

    CAS  PubMed  Google Scholar 

  44. Grandis JR et al. Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro. J Clin Invest. 1998;102(7):1385–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Akira S. Roles of STAT3 defined by tissue-specific gene targeting. Oncogene. 2000;19(21):2607–11.

    CAS  PubMed  Google Scholar 

  46. Cai L et al. Growth inhibition of human ovarian cancer cells by blocking STAT3 activation with small interfering RNA. Eur J Obstet Gynecol Reprod Biol. 2010;148(1):73–80.

    CAS  PubMed  Google Scholar 

  47. Gao L et al. Down-regulation of signal transducer and activator of transcription 3 expression using vector-based small interfering RNAs suppresses growth of human prostate tumor in vivo. Clin Cancer Res. 2005;11(17):6333–41.

    CAS  PubMed  Google Scholar 

  48. Gao L et al. Inhibition of STAT3 and ErbB2 suppresses tumor growth, enhances radiosensitivity, and induces mitochondria-dependent apoptosis in glioma cells. Int J Radiat Oncol Biol Phys. 2010;77(4):1223–31.

    CAS  PubMed  Google Scholar 

  49. Li X et al. STAT3 blockade with shRNA enhances radiosensitivity in Hep-2 human laryngeal squamous carcinoma cells. Oncol Rep. 2010;23(2):345–53.

    CAS  PubMed  Google Scholar 

  50. Lysaght J et al. T lymphocyte activation in visceral adipose tissue of patients with oesophageal adenocarcinoma. Brit J Surg. 2011;98(7):964–74.

    CAS  PubMed  Google Scholar 

  51. Neels JG, Olefsky JM. Inflamed fat: what starts the fire? J Clin Invest. 2006;116(1):33–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Donohoe CL et al. Obesity and gastrointestinal cancer. Brit J Surg. 2010;97(5):628–42.

    CAS  PubMed  Google Scholar 

  53. Margetic S et al. Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord. 2002;26(11):1407–33.

    CAS  PubMed  Google Scholar 

  54. Lysaght J et al. Pro-inflammatory and tumour proliferative properties of excess visceral adipose tissue. Cancer Lett. 2011;312(1):62–72.

    CAS  PubMed  Google Scholar 

  55. Baumann H et al. The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc Natl Acad Sci U S A. 1996;93(16):8374–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Morton NM et al. Leptin action in intestinal cells. J Biol Chem. 1998;273(40):26194–201.

    CAS  PubMed  Google Scholar 

  57. Barrenetxe J et al. Distribution of the long leptin receptor isoform in brush border, basolateral membrane, and cytoplasm of enterocytes. Gut. 2002;50(6):797–802.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Dalwadi H et al. Cyclooxygenase-2-dependent activation of signal transducer and activator of transcription 3 by interleukin-6 in non-small cell lung cancer. Clin Cancer Res. 2005;11(21):7674–82.

    CAS  PubMed  Google Scholar 

  59. Francois F et al. The association of gastric leptin with oesophageal inflammation and metaplasia. Gut. 2008;57(1):16–24.

    CAS  PubMed  Google Scholar 

  60. Howard JM, Pidgeon GP, Reynolds JV. Leptin and gastro-intestinal malignancies. Obes Rev. 2010;11(12):863–74.

    CAS  PubMed  Google Scholar 

  61. Kieffer TJ, Heller RS, Habener JF. Leptin receptors expressed on pancreatic beta-cells. Biochem Biophys Res Commun. 1996;224(2):522–7.

    CAS  PubMed  Google Scholar 

  62. Mix H et al. Expression of leptin and leptin receptor isoforms in the human stomach. Gut. 2000;47(4):481–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Morton NM et al. Leptin signalling in pancreatic islets and clonal insulin-secreting cells. J Mol Endocrinol. 1999;22(2):173–84.

    CAS  PubMed  Google Scholar 

  64. Uchiyama T et al. Leptin receptor is involved in STAT3 activation in human colorectal adenoma. Cancer Sci. 2011;102(2):367–72.

    CAS  PubMed  Google Scholar 

  65. Uchiyama T et al. Role of the long form leptin receptor and of the STAT3 signaling pathway in colorectal cancer progression. Int J Oncol. 2011;39(4):935–40.

    CAS  PubMed  Google Scholar 

  66. Saxena NK et al. Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res. 2007;67(6):2497–507.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Pai R et al. Leptin activates STAT and ERK2 pathways and induces gastric cancer cell proliferation. Biochem Biophys Res Commun. 2005;331(4):984–92.

    CAS  PubMed  Google Scholar 

  68. Aparicio T et al. Leptin stimulates the proliferation of human colon cancer cells in vitro but does not promote the growth of colon cancer xenografts in nude mice or intestinal tumorigenesis in Apc(Min/+) mice. Gut. 2005;54(8):1136–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Hardwick JC et al. Leptin is a growth factor for colonic epithelial cells. Gastroenterology. 2001;121(1):79–90.

    CAS  PubMed  Google Scholar 

  70. Hoda MR et al. Leptin acts as a mitogenic and antiapoptotic factor for colonic cancer cells. Brit J Surg. 2007;94(3):346–54.

    CAS  PubMed  Google Scholar 

  71. Kamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol. 2003;149:1–38.

    CAS  PubMed  Google Scholar 

  72. Sansone P, Bromberg J. Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol. 2012;30(9):1005–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Heinrich PC et al. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. 1998;334(Pt 2):297–314.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Shirota K et al. Interleukin-6 and its receptor are expressed in human intestinal epithelial cells. Virchows Arch B Cell Pathol Incl Mol Pathol. 1990;58(4):303–8.

    CAS  PubMed  Google Scholar 

  75. Schneider MR et al. Interleukin-6 stimulates clonogenic growth of primary and metastatic human colon carcinoma cells. Cancer Lett. 2000;151(1):31–8.

    CAS  PubMed  Google Scholar 

  76. Leu CM et al. Interleukin-6 acts as an antiapoptotic factor in human esophageal carcinoma cells through the activation of both STAT3 and mitogen-activated protein kinase pathways. Oncogene. 2003;22(49):7809–18.

    CAS  PubMed  Google Scholar 

  77. Block KM et al. IL-6 stimulates STAT3 and Pim-1 kinase in pancreatic cancer cell lines. Pancreas. 2012;41(5):773–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Okitsu K et al. Involvement of interleukin-6 and androgen receptor signaling in pancreatic cancer. Gene Chromosome Cancer. 2010;1(8):859–67.

    CAS  Google Scholar 

  79. Lesina M et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell. 2011;19(4):456–69.

    CAS  PubMed  Google Scholar 

  80. Liu H et al. Molecular dissection of human oncostatin M-mediated signal transductions through site-directed mutagenesis. Int J Mol Med. 2009;23(2):161–72.

    PubMed  Google Scholar 

  81. Hermanns HM, Radtke S, Haan C, Tavernier J, Heinrich PC, et al. Contributions of leukemia inhibitory factor receptor and oncostatin M receptor to signal transduction in heterodimeric complexes with glycoprotein 130. J Immunol. 1999;163(12):6651–8.

    CAS  PubMed  Google Scholar 

  82. Stephens JM, Lumpkin SJ, Fishman JB. Activation of signal transducers and activators of transcription 1 and 3 by leukemia inhibitory factor, oncostatin-M, and interferon-gamma in adipocytes. J Biol Chem. 1998;273(47):31408–16.

    CAS  PubMed  Google Scholar 

  83. Migita K et al. CP690,550 inhibits oncostatin M-induced JAK/STAT signaling pathway in rheumatoid synoviocytes. Arthritis Res Ther. 2011;13(3):R72.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Balhoff JP, Stephens JM. Highly specific and quantitative activation of STATs in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 1998;247(3):894–900.

    CAS  PubMed  Google Scholar 

  85. Lin SK et al. MEK/ERK and signal transducer and activator of transcription signaling pathways modulate oncostatin M-stimulated CCL2 expression in human osteoblasts through a common transcription factor. Arthritis Rheum. 2004;50(3):785–93.

    CAS  PubMed  Google Scholar 

  86. Kok SH et al. Oncostatin M-induced CCL2 transcription in osteoblastic cells is mediated by multiple levels of STAT-1 and STAT-3 signaling: an implication for the pathogenesis of arthritis. Arthritis Rheum. 2009;60(5):1451–62.

    PubMed  Google Scholar 

  87. Fossey SL et al. Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines. BMC Cancer. 2011;11:125.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Li WQ, Dehnade F, Zafarullah M. Oncostatin M-induced matrix metalloproteinase and tissue inhibitor of metalloproteinase-3 genes expression in chondrocytes requires Janus kinase/STAT signaling pathway. J Immunol. 2001;166(5):3491–8.

    CAS  PubMed  Google Scholar 

  89. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87(6):2095–147.

    CAS  PubMed  Google Scholar 

  90. Park JI et al. Interleukin-1beta can mediate growth arrest and differentiation via the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. Cytokine. 2005;29(3):125–34.

    CAS  PubMed  Google Scholar 

  91. Samavati L et al. STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol Immunol. 2009;46(8–9):1867–77.

    CAS  PubMed  Google Scholar 

  92. Shankar E et al. High-fat diet activates pro-inflammatory response in the prostate through association of Stat-3 and NF-kappaB. Prostate. 2012;72(3):233–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Biswas SK, Sodhi A. Tyrosine phosphorylation-mediated signal transduction in MCP-1-induced macrophage activation: role for receptor dimerization, focal adhesion protein complex and JAK/STAT pathway. Int Immunopharmacol. 2002;2(8):1095–107.

    CAS  PubMed  Google Scholar 

  94. Biswas P et al. Interleukin-6 induces monocyte chemotactic protein-1 in peripheral blood mononuclear cells and in the U937 cell line. Blood. 1998;91(1):258–65.

    CAS  PubMed  Google Scholar 

  95. Jougasaki M et al. Statins suppress interleukin-6-induced monocyte chemo-attractant protein-1 by inhibiting Janus kinase/signal transducers and activators of transcription pathways in human vascular endothelial cells. Brit J Pharmacol. 2010;159(6):1294–303.

    CAS  Google Scholar 

  96. Pitroda SP et al. Tumor endothelial inflammation predicts clinical outcome in diverse human cancers. PloS One. 2012;7(10):e46104.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Miscia S et al. Tumor necrosis factor alpha (TNF-alpha) activates Jak1/Stat3-Stat5B signaling through TNFR-1 in human B cells. Cell Growth Differ. 2002;13(1):13–8.

    CAS  PubMed  Google Scholar 

  98. Loetscher H et al. Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell. 1990;61(2):351–9.

    CAS  PubMed  Google Scholar 

  99. Liu Z et al. Diet-induced obesity elevates colonic TNF-alpha in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer. J Nutr Biochem. 2012;23(10):1207–13.

    CAS  PubMed  Google Scholar 

  100. Jain SS, AshokKumar M, Bird RP. Differential expression of TNF-alpha signaling molecules and ERK1 in distal and proximal colonic tumors associated with obesity. Tumour Biol. 2011;32(5):1005–12.

    CAS  PubMed  Google Scholar 

  101. Ning Y et al. Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int J Cancer. 2011;128(9):2038–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Kim CS et al. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes. 2006;30(9):1347–55.

    CAS  Google Scholar 

  103. Bruun JM et al. Higher production of IL-8 in visceral vs. subcutaneous adipose tissue. Implication of nonadipose cells in adipose tissue. Am J Physiol Endocrinol Metab. 2004;286(1):E8–E13.

    CAS  PubMed  Google Scholar 

  104. Abolhassani M et al. Leptin receptor-related immune response in colorectal tumors: the role of colonocytes and interleukin-8. Cancer Res. 2008;68(22):9423–32.

    CAS  PubMed  Google Scholar 

  105. Cacev T et al. Influence of interleukin-8 and interleukin-10 on sporadic colon cancer development and progression. Carcinogenesis. 2008;29(8):1572–80.

    CAS  PubMed  Google Scholar 

  106. Wilson AJ, Byron K, Gibson PR. Interleukin-8 stimulates the migration of human colonic epithelial cells in vitro. Clin Sci. 1999;97(3):385–90.

    CAS  PubMed  Google Scholar 

  107. Shi Q et al. Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res. 1999;5(11):3711–21.

    CAS  PubMed  Google Scholar 

  108. Hussain F et al. The expression of IL-8 and IL-8 receptors in pancreatic adenocarcinomas and pancreatic neuroendocrine tumours. Cytokine. 2010;49(2):134–40.

    CAS  PubMed  Google Scholar 

  109. Kitadai Y et al. Expression of interleukin-8 correlates with vascularity in human gastric carcinomas. Am J Clin Pathol. 1998;152(1):93–100.

    CAS  Google Scholar 

  110. Jenkins GJ et al. Immunohistochemical study of nuclear factor-kappaB activity and interleukin-8 abundance in oesophageal adenocarcinoma; a useful strategy for monitoring these biomarkers. Am J Clin Pathol. 2007;60(11):1232–7.

    CAS  Google Scholar 

  111. Fitzgerald RC et al. Inflammatory gradient in Barrett's oesophagus: implications for disease complications. Gut. 2002;51(3):316–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Trevino JG et al. Expression and activity of SRC regulate interleukin-8 expression in pancreatic adenocarcinoma cells: implications for angiogenesis. Cancer Res. 2005;65(16):7214–22.

    CAS  PubMed  Google Scholar 

  113. Gharavi NM et al. Role of the Jak/STAT pathway in the regulation of interleukin-8 transcription by oxidized phospholipids in vitro and in atherosclerosis in vivo. J Biol Chem. 2007;282(43):31460–8.

    CAS  PubMed  Google Scholar 

  114. Burger M et al. KSHV-GPCR and CXCR2 transforming capacity and angiogenic responses are mediated through a JAK2-STAT3-dependent pathway. Oncogene. 2005;24(12):2067–75.

    CAS  PubMed  Google Scholar 

  115. Oka M et al. Signal transducer and activator of transcription 3 upregulates interleukin-8 expression at the level of transcription in human melanoma cells. Clin Exp Dermatol. 2010;19(8):e50–5.

    Google Scholar 

  116. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14(21):6735–41.

    CAS  PubMed  Google Scholar 

  117. Starr R, Hilton DJ. Negative regulation of the JAK/STAT pathway. BioEssays. 1999;21(1):47–52.

    CAS  PubMed  Google Scholar 

  118. Turkson J et al. Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation. J Biol Chem. 2001;276(48):45443–55.

    CAS  PubMed  Google Scholar 

  119. Page BD, Ball DP, Gunning PT. Signal transducer and activator of transcription 3 inhibitors: a patent review. Expert Opin Ther Pat. 2011;21(1):65–83.

    CAS  PubMed  Google Scholar 

  120. Ren Z et al. Identification of a high-affinity phosphopeptide inhibitor of Stat3. Bioorg Med Chem Lett. 2003;13(4):633–6.

    CAS  PubMed  Google Scholar 

  121. Song H et al. A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc Natl Acad Sci U S A. 2005;102(13):4700–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Xu X et al. Chemical probes that competitively and selectively inhibit Stat3 activation. PLoS One. 2009;4(3):e4783.

    PubMed Central  PubMed  Google Scholar 

  123. Berg T. Inhibition of transcription factors with small organic molecules. Curr Opin Chem Biol. 2008;12(4):464–71.

    CAS  PubMed  Google Scholar 

  124. Yue P, Turkson J. Targeting STAT3 in cancer: how successful are we? Expert Opin Invest Drugs. 2009;18(1):45–56.

    CAS  Google Scholar 

  125. Gunning PT et al. Targeting protein-protein interactions: suppression of Stat3 dimerization with rationally designed small-molecule, nonpeptidic SH2 domain binders. ChemBioChem. 2008;9(17):2800–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Turkson J et al. Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent antitumor activity. Mol Cancer Ther. 2004;3(12):1533–42.

    CAS  PubMed  Google Scholar 

  127. Zhang X et al. A novel small-molecule disrupts Stat3 SH2 domain-phosphotyrosine interactions and Stat3-dependent tumor processes. Biochem Pharmacol. 2010;79(10):1398–409.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. University of Pittsburgh. STAT3 decoy in head and neck cancer. NCT00696176.

  129. Leong PL et al. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci U S A. 2003;100(7):4138–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Sen M et al. Lack of toxicity of a STAT3 decoy oligonucleotide. Cancer Chemother Pharmacol. 2009;63(6):983–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. M.D. Anderson Cancer Center (2012) STAT3 inhibitor for solid tumors. Accessed: 1 Oct 2012.

  132. Wang S, Chen J, Zhao Y, et al. (2010) Stat3 inhibitors and therapeutic methods using the same. (WO10077589).

  133. Chen J et al. Structure-based design of conformationally constrained, cell-permeable STAT3 inhibitors. ACS Med Chem Lett. 2010;1(2):85–9.

    PubMed Central  PubMed  Google Scholar 

  134. Jones G et al. Development and validation of a genetic algorithm for flexible docking. J Mol Biolf. 1997;267(3):727–48.

    CAS  Google Scholar 

  135. Sebti SM, Hamilton AD, Turkson J, et al. (2008) Use of SH2 Stat3/Stat1 peptidomimetics as anticancer drugs. (WO08070833).

  136. Michejda, C. J., Tarasova NI, Timofeeva O, et al. (2008) Peptide-based STAT inhibitor. (WO08151037).

  137. Timofeeva OA et al. Rationally designed inhibitors identify STAT3 N-domain as a promising anticancer drug target. ACS Chem Biol. 2007;2(12):799–809.

    CAS  PubMed  Google Scholar 

Download references

Funding

K.E. O’Sullivan is funded by a scholarship grant from the Irish Cancer Society (grant code CRS120SU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katie E. O’Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Sullivan, K.E., Reynolds, J.V., O’Hanlon, C. et al. Could Signal Transducer and Activator of Transcription 3 be a Therapeutic Target in Obesity-Related Gastrointestinal Malignancy?. J Gastrointest Canc 45, 1–11 (2014). https://doi.org/10.1007/s12029-013-9555-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-013-9555-x

Keywords

Navigation