Skip to main content

Advertisement

Log in

Predicting Clinical Outcomes 7–10 Years after Severe Traumatic Brain Injury: Exploring the Prognostic Utility of the IMPACT Lab Model and Cerebrospinal Fluid UCH-L1 and MAP-2

  • Original work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Severe traumatic brain injury (TBI) is a major contributor to disability and mortality in the industrialized world. Outcomes of severe TBI are profoundly heterogeneous, complicating outcome prognostication. Several prognostic models have been validated for acute prediction of 6-month global outcomes following TBI (e.g., morbidity/mortality). In this preliminary observational prognostic study, we assess the utility of the International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) Lab model in predicting longer term global and cognitive outcomes (7–10 years post injury) and the extent to which cerebrospinal fluid (CSF) biomarkers enhance outcome prediction.

Methods

Very long-term global outcome was assessed in a total of 59 participants (41 of whom did not survive their injuries) using the Glasgow Outcome Scale-Extended and Disability Rating Scale. More detailed outcome information regarding cognitive functioning in daily life was collected from 18 participants surviving to 7–10 years post injury using the Cognitive Subscale of the Functional Independence Measure. A subset (n = 10) of these participants also completed performance-based cognitive testing (Digit Span Test) by telephone. The IMPACT lab model was applied to determine its prognostic value in relation to very long-term outcomes as well as the additive effects of acute CSF ubiquitin C-terminal hydrolase-L1 (UCH-L1) and microtubule associated protein 2 (MAP-2) concentrations.

Results

The IMPACT lab model discriminated favorable versus unfavorable 7- to 10-year outcome with an area under the receiver operating characteristic curve of 0.80. Higher IMPACT lab model risk scores predicted greater extent of very long-term morbidity (β = 0.488 p = 0.000) as well as reduced cognitive independence (β =  − 0.515, p = 0.034). Acute elevations in UCH-L1 levels were also predictive of lesser independence in cognitive activities in daily life at very long-term follow-up (β = 0.286, p = 0.048). Addition of two CSF biomarkers significantly improved prediction of very long-term neuropsychological performance among survivors, with the overall model (including IMPACT lab score, UCH-L1, and MAP-2) explaining 89.6% of variance in cognitive performance 7–10 years post injury (p = 0.008). Higher acute UCH-L1 concentrations were predictive of poorer cognitive performance (β =  − 0.496, p = 0.029), whereas higher acute MAP-2 concentrations demonstrated a strong cognitive protective effect (β = 0.679, p = 0.010).

Conclusions

Although preliminary, results suggest that existing prognostic models, including models with incorporation of CSF markers, may be applied to predict outcome of severe TBI years after injury. Continued research is needed examining early predictors of longer-term outcomes following TBI to identify potential targets for clinical trials that could impact long-ranging functional and cognitive outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention. Surveillance Report of Traumatic Brain Injury-related Emergency Department Visits, Hospitalizations, and Deaths-United States, 2014. Centers Dis Control Prev US Dep Heal Hum Serv. 2019;24. Available from: www.cdc.gov/TraumaticBrainInjury

  2. Ruff RM, Marshall LF, Crouch J, Klauber MR, Levin HS, Barth J, et al. Predictors of outcome following severe head trauma: follow-up data from the Traumatic Coma Data Bank. Brain Inj. 1993;7:101–11. https://doi.org/10.3109/02699059309008164.

    Article  CAS  PubMed  Google Scholar 

  3. Kaplan CP. The relationship between cognition and functional independence in adults with traumatic brain injury. Arch Phys Med Rehabil. 1994;75:643.

    Article  CAS  PubMed  Google Scholar 

  4. Draper K, Ponsford J. Cognitive functioning ten years following traumatic brain injury and rehabilitation. Neuropsychology. 2008;22:618–25.

    Article  PubMed  Google Scholar 

  5. Jourdan C, Bayen E, Pradat-Diehl P, Ghout I, Darnoux E, Azerad S, et al. A comprehensive picture of 4-year outcome of severe brain injuries. Results from the PariS-TBI study. Ann Phys Rehabil Med. 2016;59:100–6. https://doi.org/10.1016/j.rehab.2015.10.009.

    Article  CAS  PubMed  Google Scholar 

  6. Colantonio A, Ratcliff G, Chase S, Kelsey S, Escobar M, Vernich L. Long-term outcomes after moderate to severe traumatic brain injury. Disabil Rehabil England. 2004;26:253–61.

    Article  CAS  Google Scholar 

  7. Devitt R, Colantonio A, Dawson D, Teare G, Ratcliff G, Chase S. Prediction of long-term occupational performance outcomes for adults after moderate to severe traumatic brain injury. Disabil Rehabil England. 2006;28:547–59.

    Article  CAS  Google Scholar 

  8. Dikmen SS, Corrigan JD, Levin HS, Machamer J, Stiers W, Weisskopf MG. Cognitive outcome following traumatic brain injury. J Head Trauma Rehabil. 2009;24:430–8.

    Article  PubMed  Google Scholar 

  9. Gautschi OP, Huser MC, Smoll NR, Maedler S, Bednarz S, von Hessling A, et al. Long-term neurological and neuropsychological outcome in patients with severe traumatic brain injury. Clin Neurol Neurosurg. 2016;115:2482–8. https://doi.org/10.1016/j.clineuro.2013.09.038.

    Article  Google Scholar 

  10. Dismuke CE, Walker RJ, Egede LE. Utilization and cost of health services in individuals with traumatic brain injury. Glob J Health Sci. 2015;7:156–69.

    PubMed  PubMed Central  Google Scholar 

  11. Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med. 2008;5:1251–61.

    Article  Google Scholar 

  12. Marmarou A, Lu J, Butcher I, McHugh GS, Mushkudiani NA, Murray GD, et al. IMPACT database of traumatic brain injury: design and description. J Neurotrauma. 2007;24:239–50. https://doi.org/10.1089/neu.2006.0036.

    Article  PubMed  Google Scholar 

  13. Dadas A, Washington J, Diaz-Arrastia R, Janigro D. Biomarkers in traumatic brain injury (TBI): a review. Neuropsychiatr Dis Treat. 2018;14:2989–3000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jackson P, Thompson RJ. The demonstration of new human brain-specific proteins by high- resolution two-dimensional polyacrylamide gel electrophoresis. J Neurol Sci. 1981;49:429–38.

    Article  CAS  PubMed  Google Scholar 

  15. Tongaonkar P, Chen L, Lambertson D, Ko B, Madura K. Evidence for an interaction between ubiquitin-conjugating enzymes and the 26S proteasome. Mol Cell Biol. 2000;20:4691–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kobeissy FH, Ottens AK, Zhang Z, Liu MC, Denslow ND, Dave JR, et al. Novel differential neuroproteomics analysis of traumatic brain injury in rats. Mol Cell Proteom. 2006;5:1887–98. https://doi.org/10.1074/mcp.M600157-MCP200.

    Article  CAS  Google Scholar 

  17. Liu MC, Akinyi L, Scharf D, Mo J, Larner SF, Muller U, et al. Ubiquitin C-terminal hydrolase-L1 as a biomarker for ischemic and traumatic brain injury in rats. Eur J Neurosci. 2010;31:722–32.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Papa L, Akinyi L, Liu MC, Pineda JA, Tepas JJ, Oli MW, et al. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med. 2010;38:138–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Siman R, Toraskar N, Dang A, Mcneil E, McGarvey M, Plaum J, et al. A panel of neuron-enriched proteins as markers for traumatic brain injury in humans. J Neurotrauma. 2009;26:1867–77.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brophy GM, Mondello S, Papa L, Robicsek SA, Gabrielli A, Tepas J, et al. Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. J Neurotrauma. 2011;28:861–70.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Czeiter E, Mondello S, Kovacs N, Sandor J, Gabrielli A, Schmid K, et al. Brain injury biomarkers may improve the predictive power of the IMPACT outcome calculator. J Neurotrauma. 2012;29:1770–8. https://doi.org/10.1089/neu.2011.2127.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sánchez C, Díaz-Nido J, Avila J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol. 2000;61:133–68.

    Article  PubMed  Google Scholar 

  23. Park D, Joo SS, Lee HJ, Choi K-C, Kim SU, Kim Y-B. Microtubule-associated protein 2, an early blood marker of ischemic brain injury. J Neurosci Res. 2012;90:461–7. https://doi.org/10.1002/jnr.22769.

    Article  CAS  PubMed  Google Scholar 

  24. Rice D, Wang KKW, Robicsek S. Biomarkers of traumatic brain injury in the geriatric population. Curr Transl Geriatr Gerontol Rep. 2012;1:129–34. https://doi.org/10.1007/s13670-012-0022-5.

    Article  CAS  Google Scholar 

  25. Papa L, Robicsek SA, Brophy GM, Wang KKW, Hannay HJ, Heaton S, et al. Temporal profile of microtubule-associated protein 2: a novel indicator of diffuse brain injury severity and early mortality after brain trauma. J Neurotrauma. 2017;35:32–40. https://doi.org/10.1089/neu.2017.4994.

    Article  PubMed  Google Scholar 

  26. Mondello S, Gabrielli A, Catani S, D’Ippolito M, Jeromin A, Ciaramella A, et al. Increased levels of serum MAP-2 at 6-months correlate with improved outcome in survivors of severe traumatic brain injury. Brain Inj. 2012;26:1629–35.

    Article  PubMed  Google Scholar 

  27. Leterrier JF, Kurachi M, Tashiro T, Janmey PA. MAP2-mediated in vitro interactions of brain microtubules and their modulation by cAMP. Eur Biophys J. 2009;38:381–93.

    Article  CAS  PubMed  Google Scholar 

  28. Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol. 2001;155:65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Papa L, Robertson CS, Wang KKW, Brophy GM, Hannay HJ, Heaton S, et al. Biomarkers improve clinical outcome predictors of mortality following non-penetrating severe traumatic brain injury. Neurocrit Care. 2014;22:52–64.

    Article  CAS  Google Scholar 

  30. Honeybul S, Ho KM, Lind CRP, Gillett GR. Validation of the CRASH model in the prediction of 18-month mortality and unfavorable outcome in severe traumatic brain injury requiring decompressive craniectomy. J Neurosurg. 2014;120:1131–7. https://doi.org/10.3171/2014.1.JNS131559.

    Article  PubMed  Google Scholar 

  31. Birle C, Slavoaca D, Muresanu I, Chira D, Vacaras V, Stan AD, et al. The effect of cerebrolysin on the predictive value of baseline prognostic risk score in moderate and severe traumatic brain injury. J Med Life. 2020;13:283–8.

    PubMed  PubMed Central  Google Scholar 

  32. Moore NA, Brennan PM, Baillie JK. Wide variation and systematic bias in expert clinicians’ perceptions of prognosis following brain injury. Br J Neurosurg. 2013;27:340–3. https://doi.org/10.3109/02688697.2012.754402.

    Article  CAS  PubMed  Google Scholar 

  33. Perel P, Arango M, Clayton T, Edwards P, Komolafe E, Poccock S, et al. Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. Br Med J. 2008;336:425–9.

    Article  Google Scholar 

  34. Pettigrew LEL, Wilson JTL, Teasdale GM. Reliability of ratings on the Glasgow outcome scales from in-person and telephone structured interviews. J Head Trauma Rehabil. 2003;18:252–8.

    Article  PubMed  Google Scholar 

  35. Levin HS, Boake C, Song J, McCauley S, Contant C, Diaz-Marchan P, et al. Validity and sensitivity to change of the extended Glasgow outcome scale in mild to moderate traumatic brain injury. J Neurotrauma. 2001;18:575–84. https://doi.org/10.1089/089771501750291819.

    Article  CAS  PubMed  Google Scholar 

  36. Wilson JTL, Pettigrew LEL, Teasdale GM. Structured interviews for the Glasgow outcome scale and the extended Glasgow outcome scale: guidelines for their use. J Neurotrauma. 1998;15:573–85. https://doi.org/10.1089/neu.1998.15.573.

    Article  CAS  PubMed  Google Scholar 

  37. Weir J, Steyerberg EW, Butcher I, Lu J, Lingsma HF, McHugh GS, et al. Does the extended Glasgow outcome scale add value to the conventional Glasgow outcome scale? J Neurotrauma. 2012;29:53–8. https://doi.org/10.1089/neu.2011.2137.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wilde EA, Whiteneck GG, Bogner J, Bushnik T, Cifu DX, Dikmen S, et al. Recommendations for the use of common outcome measures in traumatic brain injury research. Arch Phys Med Rehabil. 2010;91:1650-1660.e17. https://doi.org/10.1016/j.apmr.2010.06.033.

    Article  PubMed  Google Scholar 

  39. Rappaport M, Hall KM, Hopkins K, Belleza T, Cope DN. Disability rating scale for severe head trauma: coma to community. Arch Phys Med Rehabil. 1982;63:118–23.

    CAS  PubMed  Google Scholar 

  40. Hall KM, Bushnik T, Lakisic-Kazazic B, Wright J, Cantagallo A. Assessing traumatic brain injury outcome measures for long-term follow-up of community-based individuals. Arch Phys Med Rehabil. 2001;82:367–74.

    Article  CAS  PubMed  Google Scholar 

  41. Gouvier WD, Blanton PD, LaPorte KK, Nepomuceno C. Reliability and validity of the Disability Rating Scale and the Levels of Cognitive Functioning Scale in monitoring recovery from severe head injury. Arch Phys Med Rehabil United States. 1987;68:94–7.

    CAS  Google Scholar 

  42. Hobart JC, Lamping DL, Freeman JA, Langdon DW, McLellan DL, Greenwood RJ, et al. Evidence-based measurement: which disability scale for neurologic rehabilitation? Neurology United States. 2001;57:639–44.

    Article  CAS  Google Scholar 

  43. Hawley CA, Taylor R, Hellawell DJ, Pentland B. Use of the functional assessment measure (FIM+FAM) in head injury rehabilitation: a psychometric analysis. J Neurol Neurosurg Psychiatry. 1999;67:749–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shukla D, Devi BI, Agrawal A. Outcome measures for traumatic brain injury. Clin Neurol Neurosurg. 2011;113:435–41. https://doi.org/10.1016/j.clineuro.2011.02.013.

    Article  PubMed  Google Scholar 

  45. Tepper S, Beatty P, DeJong G. Outcomes in traumatic brain injury: self-report versus report of significant others. Brain Inj England. 1996;10:575–81.

    Article  CAS  Google Scholar 

  46. Turner-Stokes L, Nyein K, Turner-Stokes T, Gatehouse C. The UK FIM+FAM: development and evaluation. Clin Rehabil. 1999;13:277–87. https://doi.org/10.1191/026921599676896799.

    Article  CAS  PubMed  Google Scholar 

  47. Hammond FM, Hart T, Bushnik T, Corrigan JD, Sasser H. Change and predictors of change in communication, cognition, and social function between 1 and 5 years after traumatic brain injury. J Head Trauma Rehabil. 2004;19:314–28.

    Article  PubMed  Google Scholar 

  48. Mathias JL, Wheaton P. Changes in attention and information-processing speed following severe traumatic brain injury: a meta-analytic review. Neuropsychology. 2007;21:212–23.

    Article  PubMed  Google Scholar 

  49. Wilson RS, Bennett DA. Assessment of cognitive decline in old age with brief tests amenable to telephone administration. Neuroepidemiology. 2005;25:19–25. https://doi.org/10.1159/000085309.

    Article  PubMed  Google Scholar 

  50. Wechsler D. Wechsler Adult Intelligence Scale III. San Antonio: Psychol. Corp; 1997.

    Google Scholar 

  51. Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. J Neurotrauma. 2010;27:1529–40.

    Article  PubMed  Google Scholar 

  52. Honeybul S, Ho KM. Predicting long-term neurological outcomes after severe traumatic brain injury requiring decompressive craniectomy: a comparison of the CRASH and IMPACT prognostic models. Injury. 2016;47:1886–92.

    Article  PubMed  Google Scholar 

  53. Harrison-Felix CL, Whiteneck GG, Jha A, DeVivo MJ, Hammond FM, Hart DM. Mortality over four decades after traumatic brain injury rehabilitation: a retrospective cohort study. Arch Phys Med Rehabil. 2009;90:1506–13. https://doi.org/10.1016/j.apmr.2009.03.015.

    Article  PubMed  Google Scholar 

  54. Harrison-Felix CL, Whiteneck G, Devivo M, Hammond FM, Jha A. Mortality following rehabilitation in the traumatic brain injury model systems of care. NeuroRehabilitation. 2004;19:45–54.

    Article  PubMed  Google Scholar 

  55. Baguley I, Slewa-Younan S, Lazarus R, Green A. Long-term mortality trends in patients with traumatic brain injury. Brain Inj. 2000;14:505–12. https://doi.org/10.1080/026990500120420.

    Article  CAS  PubMed  Google Scholar 

  56. Kox M, Pompe JC, Pickkers P, Hoedemaekers CW, van Vugt AB, van der Hoeven JG. Increased vagal tone accounts for the observed immune paralysis in patients with traumatic brain injury. Neurology. 2008;70:480–5.

    Article  CAS  PubMed  Google Scholar 

  57. Lingsma HF, Roozenbeek B, Li B, Lu J, Weir J, Butcher I, et al. Large between-center differences in outcome after moderate and severe traumatic brain injury in the international mission on prognosis and clinical trial design in traumatic brain injury (IMPACT) study. Neurosurgery. 2011;68:601–7 (discussion 607-8).

    Article  PubMed  Google Scholar 

  58. Till C, Colella B, Verwegen J, Green RE. Postrecovery cognitive decline in adults with traumatic brain injury. Arch Phys Med Rehabil. 2008;89:S25–34. https://doi.org/10.1016/j.apmr.2008.07.004.

    Article  PubMed  Google Scholar 

  59. Niemeier JP, Marwitz JH, Lesher K, Walker WC, Bushnik T. Gender differences in executive functions following traumatic brain injury. Neuropsychol Rehabil. 2007;17:293–313. https://doi.org/10.1080/09602010600814729.

    Article  PubMed  Google Scholar 

  60. Millis SR, Rosenthal M, Novack TA, Sherer M, Nick TG, Kreutzer JS, et al. Long-term neuropsychological outcome after traumatic brain injury. J Head Trauma Rehabil. 2001;16:343–55.

    Article  CAS  PubMed  Google Scholar 

  61. Bhandari M, Lochner H, Tornetta P. Effect of continuous versus dichotomous outcome variables on study power when sample sizes of orthopaedic randomized trials are small. Arch Orthop Trauma Surg. 2002;122:96–8. https://doi.org/10.1007/s004020100347.

    Article  PubMed  Google Scholar 

  62. Nichol AD, Higgins AM, Gabbe BJ, Murray LJ, Cooper DJ, Cameron PA. Measuring functional and quality of life outcomes following major head injury: common scales and checklists. Injury. 2011;42:281–7. https://doi.org/10.1016/j.injury.2010.11.047.

    Article  CAS  PubMed  Google Scholar 

  63. Metze K. Dichotomization of continuous data—a pitfall in prognostic factor studies. Pathol Res Pract. 2008;204:213–4.

    Article  PubMed  Google Scholar 

  64. Alali AS, Vavrek D, Barber J, Dikmen S, Nathens AB, Temkin NR. Comparative study of outcome measures and analysis methods for traumatic brain injury trials. J Neurotrauma. 2015;32:581–9. https://doi.org/10.1089/neu.2014.3495.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gasquoine PG. Blissfully unaware: anosognosia and anosodiaphoria after acquired brain injury. Neuropsychol Rehabil. 2016;26:261–85. https://doi.org/10.1080/09602011.2015.1011665.

    Article  PubMed  Google Scholar 

  66. Johnson GV, Jope RS. The role of microtubule-associated protein 2 (MAP-2) in neuronal growth, plasticity, and degeneration. J Neurosci Res United States. 1992;33:505–12.

    Article  CAS  Google Scholar 

  67. Boto GR, Gómez PA, De La Cruz J, Lobato RD. Severe head injury and the risk of early death. J Neurol Neurosurg Psychiatry. 2006;77:1054–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Treggiari MM, Schutz N, Yanez ND, Romand JA. Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: a systematic review. Neurocrit Care. 2007;6:104–12.

    Article  PubMed  Google Scholar 

  69. Murray GD, Butcher I, McHugh GS, Lu J, Mushkudiani NA, Maas AIR, et al. Multivariable prognostic analysis in traumatic brain injury: results from the IMPACT study. J Neurotrauma. 2007;24:329–37.

    Article  PubMed  Google Scholar 

  70. Thelin E, Al Nimer F, Frostell A, Zetterberg H, Blennow K, Nyström H, et al. A Serum protein biomarker panel improves outcome prediction in human traumatic brain injury. J Neurotrauma. 2019;36:2850–62.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Carter EL, Hutchinson PJA, Kolias AG, Menon DK. Predicting the outcome for individual patients with traumatic brain injury: a case-based review. Br J Neurosurg. 2016;30:227–32. https://doi.org/10.3109/02688697.2016.1139048.

    Article  PubMed  Google Scholar 

  72. Ponsford J, McLaren A, Schönberger M, Burke R, Rudzki D, Olver J, et al. The association between apolipoprotein E and traumatic brain injury severity and functional outcome in a rehabilitation sample. J Neurotrauma. 2011;28:1683–92. https://doi.org/10.1089/neu.2010.1623.

    Article  PubMed  Google Scholar 

  73. Corrigan JD, Harrison-Felix C, Bogner J, Dijkers M, Terrill MS, Whiteneck G. Systematic bias in traumatic brain injury outcome studies because of loss to follow-up. Arch Phys Med Rehabil. 2003;84:153–60.

    Article  PubMed  Google Scholar 

  74. Corrigan JD, Bogner JA, Mysiw WJ, Clinchot D, Fugate L. Systematic bias in outcome studies of persons with traumatic brain injury. Arch Phys Med Rehabil. 1997;78:132–7.

    Article  CAS  PubMed  Google Scholar 

  75. Ponsford J, Olver JH, Curran C, Ng K. Prediction of employment status 2 years after traumatic brain injury. Brain Inj. 1995;9:11–20. https://doi.org/10.3109/02699059509004566.

    Article  CAS  PubMed  Google Scholar 

  76. Svingos AM, Asken BM, Jaffee MS, Bauer RM, Heaton SC. Predicting long-term cognitive and neuropathological consequences of moderate to severe traumatic brain injury: review and theoretical framework. J Clin Exp Neuropsychol. 2019;00:1–11. https://doi.org/10.1080/13803395.2019.1620695.

    Article  Google Scholar 

Download references

Funding

This study was partially funded by the National Institutes of Health (Grant R01NS052831-05; Grant 5T32HD007414-27).

Author information

Authors and Affiliations

Authors

Contributions

A.M.S. contributed substantially to the conception, design, data acquisition, analyses, interpretation of data, and drafting/revising of the work. S.C.H. and R.M.B. substantially contributed to the conception, design, analyses, and drafting/revising of the work. S.A.R. contributed substantially to the conception, data acquisition, and drafting/revising of the work. R.L.H., K.K.W., C.S.R., L.P., and H.J.H. contributed significantly to the conception, design, and drafting/revision of the work. G.M.B. and A.G. contributed substantially to data acquisition and drafting/revising of the work. The final manuscript was approved by all authors.

Corresponding author

Correspondence to Shelley C. Heaton.

Ethics declarations

Conflict of interest

RLH and KKW have equity in and receive compensation from Banyan Biomarkers, Inc. The other authors do not have any conflicts of interest to disclose.

Ethical Approval/Informed Consent

All study procedures were approved by the institutional review board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svingos, A.M., Robicsek, S.A., Hayes, R.L. et al. Predicting Clinical Outcomes 7–10 Years after Severe Traumatic Brain Injury: Exploring the Prognostic Utility of the IMPACT Lab Model and Cerebrospinal Fluid UCH-L1 and MAP-2. Neurocrit Care 37, 172–183 (2022). https://doi.org/10.1007/s12028-022-01461-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-022-01461-y

Keywords

Navigation