Skip to main content

Advertisement

Log in

Numerical Simulation of Concussive-Generated Cortical Spreading Depolarization to Optimize DC-EEG Electrode Spacing for Noninvasive Visual Detection

  • Cortical Spreading Depolarization
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Cortical spreading depolarization (SD) is a propagating depolarization wave of neurons and glial cells in the cerebral gray matter. SD occurs in all forms of severe acute brain injury, as documented by using invasive detection methods. Based on many experimental studies of mechanical brain deformation and concussion, the occurrence of SDs in human concussion has often been hypothesized. However, this hypothesis cannot be confirmed in humans, as SDs can only be detected with invasive detection methods that would require either a craniotomy or a burr hole to be performed on athletes. Typical electroencephalography electrodes, placed on the scalp, can help detect the possible presence of SD but have not been able to accurately and reliably identify SDs.

Methods

To explore the possibility of a noninvasive method to resolve this hurdle, we developed a finite element numerical model that simulates scalp voltage changes that are induced by a brain surface SD. We then compared our simulation results with retrospectively evaluated data in patients with aneurysmal subarachnoid hemorrhage from Drenckhahn et al. (Brain 135:853, 2012).

Results

The ratio of peak scalp to simulated peak cortical voltage, Vscalp/Vcortex, was 0.0735, whereas the ratio from the retrospectively evaluated data was 0.0316 (0.0221, 0.0527) (median [1st quartile, 3rd quartile], n = 161, p < 0.001, one sample Wilcoxon signed-rank test). These differing values provide validation because their differences can be attributed to differences in shape between concussive SDs and aneurysmal subarachnoid hemorrhage SDs, as well as the inherent limitations in human study voltage measurements. This simulated scalp surface potential was used to design a virtual scalp detection array. Error analysis and visual reconstruction showed that 1 cm is the optimal electrode spacing to visually identify the propagating scalp voltage from a cortical SD. Electrode spacings of 2 cm and above produce distorted images and high errors in the reconstructed image.

Conclusions

Our analysis suggests that concussive (and other) SDs can be detected from the scalp, which could confirm SD occurrence in human concussion, provide concussion diagnosis on the basis of an underlying physiological mechanism, and lead to noninvasive SD detection in the setting of severe acute brain injury

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21:375–8.

    PubMed  Google Scholar 

  2. Coronado VG, McGuire LC, Sarmiento K, et al. Trends in Traumatic Brain Injury in the U.S. and the public health response: 1995–2009. J Safety Res. 2012;43:299–307.

    PubMed  Google Scholar 

  3. Lefevre-Dognin C, Cogné M, Perdrieau V, Granger A, Heslot C, Azouvi P. Definition and epidemiology of mild traumatic brain injury. Neurochirurgie. 2020;67:218–21.

    PubMed  Google Scholar 

  4. Mansell JL, Tierney RT, Higgins M, McDevitt J, Toone N, Glutting J. Concussive signs and symptoms following head impacts in collegiate athletes. Brain Inj. 2010;24:1070–4.

    PubMed  Google Scholar 

  5. Costello DM, Kaye AH, O’Brien TJ, Shultz SR. Sport related concussion: potential for biomarkers to improve acute management. J Clin Neurosci. 2018;56:1–6.

    PubMed  Google Scholar 

  6. Davis GA, Ellenbogen RG, Bailes J, et al. The Berlin International Consensus meeting on concussion in sport. Neurosurgery. 2018;82:232–6.

    PubMed  Google Scholar 

  7. Master CL, Mayer AR, Quinn D, Grady MF. Concussion. Ann Intern Med. 2018;169:ITC1-ITC16.

  8. Provencher MT, Frank RM, Shubert DJ, Sanchez A, Murphy CP, Zafonte RD. Concussions in sports. Orthopedics. 2019;42:12–21.

    PubMed  Google Scholar 

  9. Hobbs JG, Young JS, Bailes JE. Sports-related concussions: diagnosis, complications, and current management strategies. Neurosurg Focus. 2016;40:E5: https://doi.org/10.3171/2016.1.FOCUS15617.

  10. Shively SB, Perl DP. Traumatic brain injury, shell shock, and posttraumatic stress disorder in the military–past, present, and future. J Head Trauma Rehabil. 2012;27:234–9.

    PubMed  Google Scholar 

  11. Wells TS, Miller SC, Adler AB, Engel CC, Smith TC, Fairbank JA. Mental health impact of the Iraq and Afghanistan conflicts: a review of US research, service provision, and programmatic responses. Int Rev Psychiatry. 2011;23:144–52.

    PubMed  Google Scholar 

  12. Guskiewicz KM, Marshall SW, Bailes J, et al. Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery. 2005;57:719–26.

    PubMed  Google Scholar 

  13. Harmon KG, Drezner JA, Gammons M, et al. American Medical Society for sports medicine position statement: concussion in sport. Br J Sports Med. 2013;47:15–26.

    PubMed  Google Scholar 

  14. Bruce J, Echemendia R, Meeuwisse W, Comper P, Sisco A. 1 year test-retest reliability of ImPACT in professional ice hockey players. Clin Neurophysiol. 2013;28:14–25.

    Google Scholar 

  15. Lichtenstein JD, Moser RS, Schatz P. Age and test setting affect the prevalence of invalid baseline scores on neurocognitive tests. Am J Sports Med. 2013;42:479–84.

    PubMed  Google Scholar 

  16. Resch J, Driscoll A, McCaffrey N, et al. ImPact test-retest reliability: reliably unreliable? J Athl Train. 2013;48:506–11.

    PubMed  PubMed Central  Google Scholar 

  17. Barlow M, Schlabach D, Peiffer J, Cook C. Differences in change scores and the predictive validity of three commonly used measures following concussion in the middle school and high school aged population. Inter J Sports Phys Ther. 2011;6:150–7.

    Google Scholar 

  18. McClure DJ, Zuckerman SL, Kutscher SJ, Gregory AJ, Solomon GS. Baseline neurocognitive testing in sports-related concussions: the importance of a Prior Night’s sleep. Am J Sports Med. 2014;42:472–8.

    PubMed  Google Scholar 

  19. Cole WR, Arrieux JP, Schwab K, Ivins BJ, Qashu FM, Lewis SC. Test-retest reliability of four computerized neurocognitive assessment tools in an active duty military population. Arch Clin Neuropsychol. 2013;28:732–42.

    PubMed  Google Scholar 

  20. Thiagarajan P, Ciuffreda KJ, Ludlam DP. Vergence dysfunction in mild traumatic brain injury (mTBI): a review. Ophthalmic Physiol Opt. 2011;31:456–68.

    PubMed  Google Scholar 

  21. Echemendia RJ, Putukian M, Mackin RS, Julian L, Shoss N. Neuropsychological test performance prior to and following sports-related mild traumatic brain injury. Clin J Sport Med. 2001;11:23–31.

    CAS  PubMed  Google Scholar 

  22. Echemendia RJ, Meeuwisse W, McCrory P, et al. The Sport Concussion Assessment Tool 5th Edition (SCAT5): Background and rationale. Br J Sports Med. 2017;51:848–850.

  23. Ochiai H, Abe T. Clinical features and early detection of sport-related concussion. Acute Med Surg. 2019;6:49–53.

    PubMed  Google Scholar 

  24. Broglio SP, Cantu RC, Gioia GA, et al. National Athletic Trainers’ Association position statement: management of sport concussion. J Athl Train. 2014;49:245–65.

    PubMed  PubMed Central  Google Scholar 

  25. Somjen GG. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev. 2001;81:1065–96.

    CAS  PubMed  Google Scholar 

  26. Pacheco JM, Hines-Lanham A, Stratton C, et al. Spreading depolarizations occur in mild traumatic brain injuries and are associated with postinjury behavior. eNeuro. 2019;6:1–17.

    Google Scholar 

  27. Bouley J, Chung DY, Ayata CY, Brown RH Jr, Henninger N. Cortical spreading depression denotes concussion injury. J Neurotrauma. 2019;36:1008–17.

    PubMed  PubMed Central  Google Scholar 

  28. Smith DH, Stewart W. “Concussion” is not a true diagnosis. Nat Rev Neurol. 2020;16:457–8.

    PubMed  PubMed Central  Google Scholar 

  29. McCuddy WT, España LY, Nelson LD, Birn RM, Mayer AR, Meier TB. Association of acute depressive symptoms and functional connectivity of emotional processing regions following sport-related concussion. Neuroimage Clin. 2018;19:434–42.

    PubMed  PubMed Central  Google Scholar 

  30. O’Jile JR, Ryan LM, Betz B, et al. Information processing following mild head injury. Arch Clin Neuropsychol. 2006;21:293–6.

    PubMed  Google Scholar 

  31. Leao AAP. Spreading depression of activity in the cerebral cortex. J Neurophysiol. 1944;7:359–90.

    Google Scholar 

  32. Reid KH, Marrannes R, Wauquier A. Spreading depression and central nervous system pharmacology. J Pharmacol Methods. 1988;19:1–21.

    CAS  PubMed  Google Scholar 

  33. Leao AA. The slow voltage variation of cortical spreading depression of activity. Electroencephalogr Clin Neurophysiol. 1951;3:315–21.

    CAS  PubMed  Google Scholar 

  34. Drenckhahn C, Winkler MK, Major S, et al. Correlates of spreading depolarization in human scalp electroencephalography. Brain. 2012;135:853–68.

    PubMed  PubMed Central  Google Scholar 

  35. Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab. 2011;31:17–35.

    PubMed  Google Scholar 

  36. Strong AJ, Fabricius M, Boutelle MG, et al. Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke. 2002;33:2738–43.

    PubMed  Google Scholar 

  37. Leao AAP. Further observations on the speading depression of activity in the cerebral cortex. J Neurophysiol. 1947;10:409–14.

    CAS  PubMed  Google Scholar 

  38. Kraig RP, Nicholson C. Extracellular ionic variations during spreading depression. Neuroscience. 1978;3:1045–59.

    CAS  PubMed  Google Scholar 

  39. Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;17:439–47.

    CAS  PubMed  Google Scholar 

  40. Enger R, Tang W, Vindedal GF, et al. Dynamics of ionic shifts in cortical spreading depression. Cereb Cortex. 2015;25:4469–76.

    PubMed  PubMed Central  Google Scholar 

  41. Woitzik J, Hecht N, Pinczolits A, et al. Propagation of cortical spreading depolarization in the human cortex after malignant stroke. Neurology. 2013;80:1095–102.

    PubMed  Google Scholar 

  42. Grafstein B. Locus of propagation of spreading cortical depression. J Neurophysiol. 1956;19:308–16.

    CAS  PubMed  Google Scholar 

  43. Mayevsky A, Doron A, Manor T, Meilin S, Zarchin N, Ouaknine GE. Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Res. 1996;740:268–74.

    CAS  PubMed  Google Scholar 

  44. Dohmen C, Sakowitz OW, Fabricius M, et al. Delayed secondary phase of peri-infarct depolarizations after focal cerebral ischemia: relation to infarct growth and neuroprotection. Ann Neurol. 2008;63:720–8.

    PubMed  Google Scholar 

  45. Dreier JP, Woitzik J, Fabricius M, et al. Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain. 2006;129:3224–37.

    PubMed  Google Scholar 

  46. Dreier JP, Major S, Manning A, et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain. 2009;132:1866–81.

    PubMed  PubMed Central  Google Scholar 

  47. Fabricius M, Fuhr S, Bhatia R, et al. Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain. 2006;129:778–90.

    PubMed  Google Scholar 

  48. Hartings JA, Bullock MR, Okonkwo DO, et al. Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study. Lancet Neurol. 2011;10:1058–64.

    PubMed  Google Scholar 

  49. Helbok R, Schiefecker AJ, Friberg C, et al. Spreading depolarizations in patients with spontaneous intracerebral hemorrhage: association with perihematomal edema progression. J Cereb Blood Flow Metab. 2017;37:1871–82.

    PubMed  Google Scholar 

  50. Dreier JP, Reiffurth C. The stroke-migraine depolarization continuum. Neuron. 2015;86:902–22.

    CAS  PubMed  Google Scholar 

  51. Hartings JA, Shuttleworth CW, Kirov SA, et al. The continuum of spreading depolarizations in acute cortical lesion development: examining Leao’s legacy. J Cereb Blood Flow Metab. 2017;37:1571–94.

    PubMed  Google Scholar 

  52. Oliveira-Ferreira AI, Milakara D, Alam M, et al. Experimental and preliminary clinical evidence of an ischemic zone with prolonged negative DC shifts surrounded by a normally perfused tissue belt with persistent electrocorticographic depression. J Cereb Blood Flow Metab. 2010;30:1504–19.

    PubMed  PubMed Central  Google Scholar 

  53. Hartings JA, York J, Carroll CP, et al. Subarachnoid blood acutely induces spreading depolarizations and early cortical infarction. Brain. 2017;140:2673–90.

    PubMed  PubMed Central  Google Scholar 

  54. Luckl J, Lemale CL, Kola V, et al. The negative ultraslow potential, electrophysiological correlate of infarction in the human cortex. Brain. 2018;141:1734–52.

    PubMed  PubMed Central  Google Scholar 

  55. Dreier JP, Major S, Foreman B, et al. Terminal spreading depolarization and electrical silence in death of human cerebral cortex. Ann Neurol. 2018;83:295–310.

    PubMed  PubMed Central  Google Scholar 

  56. Dreier JP, Major S, Lemale CL, et al. Correlates of spreading depolarization, spreading depression, and negative ultraslow potential in epidural versus subdural electrocorticography. Front Neurosci. 2019;13:373.

    PubMed  PubMed Central  Google Scholar 

  57. Carlson AP, Shuttleworth CW, Major S, Lemale CL, Dreier JP, Hartings JA. Terminal spreading depolarizations causing electrocortical silencing prior to clinical brain death: case report. J Neurosurg. 2018;131:1773–9.

    PubMed  Google Scholar 

  58. Menyhárt Á, Frank R, Farkas AE, et al. Malignant astrocyte swelling and impaired glutamate clearance drive the expansion of injurious spreading depolarization foci. J Cereb Blood Flow Metab. 2021;Online ahead eprint.

  59. Hadjikhani N, Sanchez Del Rio M, Wu O, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA. 2001;98:4687–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Major S, Huo S, Lemale CL, et al. Direct electrophysiological evidence that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura and a review of the spreading depolarization continuum of acute neuronal mass injury. Geroscience. 2020;42:57–80.

    PubMed  Google Scholar 

  61. Kumagai T, Walberer M, Nakamura H, et al. Distinct spatiotemporal patterns of spreading depolarizations during early infarct evolution: evidence from real-time imaging. J Cereb Blood Flow Metab. 2011;31:580–92.

    PubMed  Google Scholar 

  62. Zachar J. Zacharova D [Mechanical energy as causative agent of spreading depression]. Cesk Fysiol. 1958;7:189–90.

    CAS  PubMed  Google Scholar 

  63. Zachar J, Zacharova D. [Mechanism of the origin of spreading cortical depression] (in Slovak). Lek Pr. 1963;3:3–110.

    CAS  PubMed  Google Scholar 

  64. Zachar J, Zacharova D. Subthreshold changes at the site of initiation of spreading cortical depression by mechanical stimuli. Electroencephalogr Clin Neurophysiol. 1961;13:896–904.

    Google Scholar 

  65. Bures J, Buresova O, Krivanek J. Initiation of Spreading Depression: Mechanical Stimuli. The Mechanism and Application of Leao's Spreading Depression of Electroencephalographic Activity. Prague: Academia; 1974:26–30.

  66. Shah KR, West M. The effect of concussion on cerebral uptake of 2-deoxy-D-glucose in rat. Neurosci Lett. 1983;40:287–91.

    CAS  PubMed  Google Scholar 

  67. Takahashi H, Manaka S, Sano K. Changes in extracellular potassium concentration in cortex and brain stem during the acute phase of experimental closed head injury. J Neurosurg. 1981;55:708–17.

    CAS  PubMed  Google Scholar 

  68. West M, Parkinson D, Havlicek V. Spectral analysis of the electroencephalographic response in experimental concussion in the rat. Electroencephalogr Clin Neurophysiol. 1982;53:192–200.

    CAS  PubMed  Google Scholar 

  69. Meyer JS, Denny-Brown D. Studies of cerebral circulation in brain injury. II Cerebral concussion. Electroencephalogr Clin Neurophysiol. 1955;7:529–44.

    CAS  PubMed  Google Scholar 

  70. Watanabe N, Noriaki W. The mechanism and pathophysiology of rat cerebral concussion: changes in rCBF, ECoG, SPC following skull impact. J Med Soc Toho Univ. 2002;49:23–30.

    Google Scholar 

  71. Oka H, Kako M, Matsushima M, Ando K. Specific type of head injury in children. Report of 5 cases. Brain. 1977;100:287–98.

    CAS  PubMed  Google Scholar 

  72. Takahashi H, Nakazawa S. Specific type of head injury in children. Report of 5 cases. Childs Brain. 1980;7:124–31.

    CAS  PubMed  Google Scholar 

  73. Barkhoudarian G, Hovda DA, Giza CC. The molecular pathophysiology of concussive brain injury. Clin Sports Med. 2011;30:33–48.

    PubMed  Google Scholar 

  74. Sakas DE, Whitwell HL. Neurological episodes after minor head injury and trigeminovascular activation. Med Hypotheses. 1997;48:431–5.

    CAS  PubMed  Google Scholar 

  75. The editor. Vasodilatation and migraine. Lancet. 1990;335:822–823.

  76. Pietrobon D, Moskowitz MA. Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci. 2014;15:379–93.

    CAS  PubMed  Google Scholar 

  77. Marshall WH. Spreading cortical depression of Leao. Physiol Rev. 1959;39:239–79.

    CAS  PubMed  Google Scholar 

  78. Geddes-Klein DM, Schiffman KB, Meaney DF. Mechanisms and consequences of neuronal stretch injury in vitro differ with the model of trauma. J Neurotrauma. 2006;23:193–204.

    PubMed  Google Scholar 

  79. Keating CE, Cullen DK. Mechanosensation in traumatic brain injury. Neurobiol Dis. 2021;148:105210, Online ahead of print: https://doi.org/10.1016/j.nbd.2020.105210.

  80. Tavalin SJ, Ellis EF, Satin LS. Mechanical perturbation of cultured cortical neurons reveals a stretch-induced delayed depolarization. J Neurophysiol. 1995;74:2767–73.

    CAS  PubMed  Google Scholar 

  81. Hibino M, Itoh H, Kinosita K Jr. Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys J. 1993;64:1789–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Fischer P, Sugimoto K, Chung DY, et al. Rapid hematoma growth triggers spreading depolarizations in experimental intracortical hemorrhage. J Cereb Blood Flow Metab. 2021;41:1264–76.

    CAS  PubMed  Google Scholar 

  83. Hallez H, Vanrumste B, Grech R, et al. Review on solving the forward problem in EEG source analysis. J Neuroeng Rehabil. 2007;4: https://doi.org/10.1186/1743-0003-4-46.

  84. Ramon C, Schimpf PH, Haueisen J. Influence of head models on EEG simulations and inverse source localizations. BioMed Eng OnLine. 2006; 5:1–13: https://doi.org/10.1186/1475-925X-5-10.

  85. Miller JW, Kim W, Holmes MD, Vanhatalo S. Ictal localization by source analysis of infraslow activity in DC-coupled scalp EEG recordings. Neuroimage. 2007;35:583–97.

    PubMed  Google Scholar 

  86. Chamanzar A, Behrmann M, Grover P. Neural silences can be localized rapidly using noninvasive scalp EEG. Commun Biol. 2021;4:429.

    PubMed  PubMed Central  Google Scholar 

  87. Cuffin BN. Effects of local variations in skull and scalp thickness on EEG’s and MEG’s. IEEE Trans Biomed Eng. 1993;40:42–8.

    CAS  PubMed  Google Scholar 

  88. Cuffin BN. Effects of head shape on EEG’s and MEG’s. IEEE Trans Biomed Eng. 1990;37:44–52.

    CAS  PubMed  Google Scholar 

  89. Stavtsev AI, Ushakov VL, Verkhliutov VM. [Modeling the effect of the layer thickness and tissue conductivities of the head and the brain on the EEG potentials using finite element method][Article in Russian]. Zh Vyssh Nerv Deiat Im I P Pavlova. 2007;57:742–752.

  90. Baillet S, Mosher JC, Leahy RM. Electromagnetic brain mapping. IEEE Signal Process Mag. 2001;18:14–30.

    Google Scholar 

  91. Leahy RM, Mosher JC, Spencer ME, Huang MX, Lewine JD. A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalogr Clin Neurophysiol. 1998;107:159–73.

    CAS  PubMed  Google Scholar 

  92. Wen P. The impact of inhomogeneous tissue anisotropy on potential distribution within head model. Australas Phys Eng Sci Med. 2003;26:115–8.

    CAS  PubMed  Google Scholar 

  93. Plis SM, George JS, Jun SC, Ranken DM, Volegov PL, Schmidt DM. Probabilistic forward model for electroencephalography source analysis. Phys Med Biol. 2007;52:5309–27.

    PubMed  Google Scholar 

  94. Seery GE. Surgical anatomy of the scalp. Dermatol Surg. 2002;28:581–7.

    PubMed  Google Scholar 

  95. Penn JW, Bell EL. Electrical Parameter Values of Some Human Tissues in the Radiofrequency Radiation Range. 1978; Defense Technical Information Center, Report # SAM-TR-78–38: https://apps.dtic.mil/sti/pdfs/ADA064202.pdf

  96. Gabriel C, Peyman A, Grant EH. Electrical conductivity of tissue at frequencies below 1 MHz. Phys Med Biol. 2009;54:4863–78.

    CAS  PubMed  Google Scholar 

  97. Pellman EJ, Viano DC, Tucker AM, Casson IR. Concussion in professional football: location and direction of helmet impacts-Part 2. Neurosurgery. 2003;53:1328–40.

    PubMed  Google Scholar 

  98. Dannhauer M, Lanfer B, Wolters CH, Knosche TR. Modeling of the human skull in EEG source analysis. Hum Brain Mapp. 2011;32:1383–99.

    PubMed  Google Scholar 

  99. Petrov Y. Anisotropic spherical head model and its application to imaging electric activity of the brain. Phys Rev E Stat Nonlin Soft Matter Phys. 2012;86:011917–011917. https://doi.org/10.1103/PhysRevE.86.011917.

    Article  CAS  PubMed  Google Scholar 

  100. Bruno P, Vatta F, Mininel S, Inchingolo P. Referenced EEG and head volume conductor model: geometry and parametrical setting. Conf Proc IEEE Eng Med Biol Soc. 2004;2:833–6.

    Google Scholar 

  101. Johnson G, Massoudi M, Rajagopal KR. Flow of a fluid-solid mixture between flat plates. Chem Eng Sci. 1991;46:1713–23.

    CAS  Google Scholar 

  102. Tallgren P, Vanhatalo S, Kaila K, Voipio J. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin Neurophysiol. 2005;116:799–806.

    CAS  PubMed  Google Scholar 

  103. Voipio J, Tallgren P, Heinonen E, Vanhatalo S, Kaila K. Millivolt-scale DC shifts in the human scalp EEG: evidence for a nonneuronal generator. J Neurophysiol. 2003;89:2208–14.

    PubMed  Google Scholar 

  104. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869.

    PubMed  Google Scholar 

  105. Vorwerk J, Oostenveld R, Piastra MC, Magyari L, Wolters CH. The FieldTrip-SimBio pipeline for EEG forward solutions. Biomed Eng Online. 2018;17:37.

    PubMed  PubMed Central  Google Scholar 

  106. Roache PJ. Verification and validation in computational science and engineering. Albuquerque, New Mexico: Hermosa Publishers; 1998.

    Google Scholar 

  107. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. 3.6 Interpolation on a Grid in Multidimensions. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, Cambridge; 2007:132–134.

  108. Dreier JP, Fabricius M, Ayata C, et al. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: review and recommendations of the COSBID research group. J Cereb Blood Flow Metab. 2017;37:1595–625.

    PubMed  Google Scholar 

  109. Voorhies JM, Cohen-Gadol A. Techniques for placement of grid and strip electrodes for intracranial epilepsy surgery monitoring: pearls and pitfalls. Surg Neurol Int. 2013;4:98: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740610/.

  110. Hartings JA, Wilson JA, Hinzman JM, et al. Spreading depression in continuous electroencephalography of brain trauma. Ann Neurol. 2014;76:681–94.

    PubMed  Google Scholar 

  111. Klem GH, Luders HO, Jasper HH, Elger C. The ten-twenty electrode system of the International Federation. The International Federation of clinical neurophysiology. Electroencephalogr Clin Neurophysiol. 1999;52:3–6.

    CAS  Google Scholar 

  112. Oostenveld R, Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol. 2001;112:713–9.

    CAS  PubMed  Google Scholar 

  113. Hofmeijer J, van Kaam CR, van de Werff B, Vermeer SE, Tjepkema-Cloostermans MC, van Putten MJAM. Detecting cortical spreading depolarization with full band scalp electroencephalography: An illusion? Front Neurol. 2018;9: https://www.frontiersin.org/articles/https://doi.org/10.3389/fneur.2018.00017/full.

  114. Hartings JA, Ngwenya LB, Watanabe T, Foreman B. Commentary: detecting cortical spreading depolarization with full band scalp electroencephalography: an illusion? Front Syst Neurosci. 2018;12: https://www.frontiersin.org/articles/https://doi.org/10.3389/fnsys.2018.00019/full.

  115. Robinson D, Hartings J, Foreman B. First report of spreading depolarization correlates on scalp EEG confirmed with a depth electrode. Neurocrit Care. 2021.

  116. Milakara D, Grozea C, Dahlem M, et al. Simulation of spreading depolarization trajectories in cerebral cortex: correlation of velocity and susceptibility in patients with aneurysmal subarachnoid hemorrhage. Neuroimage Clin. 2017;16:524–38.

    PubMed  PubMed Central  Google Scholar 

  117. Dahlem MA, Graf R, Strong AJ, et al. Two-dimensional wave patterns of spreading depolarization: retracting, re-entrant, and stationary waves. Physica D. 2010;239:889–903.

    Google Scholar 

  118. Kenny A, Plank MJ, David T. The effects of cerebral curvature on cortical spreading depression. J Theor Biol. 2019;472:11–26.

    PubMed  Google Scholar 

  119. Santos E, Sanchez-Porras R, Sakowitz OW, Dreier JP, Dahlem MA. Heterogeneous propagation of spreading depolarizations in the lissencephalic and gyrencephalic brain. J Cereb Blood Flow Metab. 2017;37:2639–43.

    PubMed  PubMed Central  Google Scholar 

  120. Chamanzar A, George S, Venkatesh P, et al. An algorithm for automated, noninvasive detection of cortical spreading depolarizations based on EEG simulation. IEEE Trans Biomed Eng. 2019;66:1115–26.

    PubMed  Google Scholar 

  121. Bures J, Buresova O, Krivanek J. The Mechanism and application of Leao’s spreading depression of electroencephalographic activity. Prague: Academia; 1974.

    Google Scholar 

  122. Brinley FJ Jr, Kandel ER, Marshall WH. Potassium outflux from rabbit cortex during spreading depression. J Neurophysiol. 1960;23:246–56.

    PubMed  Google Scholar 

  123. Mestre H, Du T, Sweeney AM, et al. Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science. 2020;367: https://doi.org/10.1126/science.aax7171.

  124. Jones SC, Hund SJ, Singer E, Brown BR. Non-invasive detection of spreading depolarization: Initial results. 3rd International Conference on Spreading Depolarization (iCSD-2019); Yokohama, Japan: http://www.cosbid.org/wp-content/uploads/2019/07/iCSD-2019-Program.pdf.

  125. Jones SC, Hund SJ, Singer E, Brown BR. Non-invasive detection of spreading depolarization: further results. 4th International Conference on Spreading Depolarization (iCSD-2021); Sep 20, 2021; Lyon, France: Abstract of accepted oral presentation available from author.

  126. James MF, Smith MI, Bockhorst KH, et al. Cortical spreading depression in the gyrencephalic feline brain studied by magnetic resonance imaging. J Physiol. 1999;519(Pt 2):415–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Picton TW, Hillyard SA. Cephalic skin potentials in electroencephalography. Electroencephalogr Clin Neurophysiol. 1972;33:419–24.

    CAS  PubMed  Google Scholar 

  128. Tallgren P. DC-stable electrode-skin interface for human EEG recording. 2005; University of Helsinki, Department of Biological and Environmental Sciences, Finland: Report # E5: http://lib.tkk.fi/Diss/2006/isbn9512269562/article4.pdf

  129. Jones SC, Kharlamov A, Chung DY, Boada F, Yushmanov VE. Types of peri-infarct depolarization trajectories in experimental ischemic stroke. 4th International Conference on Spreading Depolarization (iCSD-2021); Sep 20, 2021; Lyon, France: Abstract of accepted poster presentation available from author.

  130. Dahnke R, Yotter RA, Ziegler G, Gaser C. Brain Tissue Thickness Estimation using a Projection Scheme. 16th Annual Meeting of the Organization for Human Brain Mapping, Program #1458; Jun 6, 2010; Barcelona: Organization of Human Brain Mapping: https://www.researchgate.net/profile/Robert_Dahnke/publication/336513396_Brain_Tissue_Thickness_Estimation_Using_a_Projection_Scheme/links/5da45dde45851553ff8f658d/Brain-Tissue-Thickness-Estimation-Using-a-Projection-Scheme.pdf.

  131. Bashkatov AN, Genina EA, Sinichkin YP, Kochubey VI, Lakodina NA, Tuchin VV. Glucose and mannitol diffusion in human dura mater. Biophys J. 2003;85:3310–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Mahinda HAM, Murty OP. Variability in thickness of human skull bones and sternum—an autopsy experience. J Forensic Med Toxicol. 2009;26:26–31.

    Google Scholar 

  133. Hori H, Moretti G, Rebora A, Crovato F. The thickness of human scalp: normal and bald. J Invest Dermatol. 1972;58:396–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Thomas Ferguson, Richard Kraig, Douglas Smith, and Joel Greenberg for reading and commenting on the manuscript and Hiba Al-Ashtal for editorial services.

Funding

This project was conducted for CerebroScope, a medical device company developing a scalp direct current electroencephalography system for detecting SDs in severe acute brain injury, concussion, and migraine. This work was partially supported by grants from the United States Public Health Service National Institutes of Health; NS30839, NS30839-14S1, and NS66292 to the SCJ while at the Allegheny-Singer Research Institute; and 5R43NS092181 and 3R43NS092181-02S1 to SCJ for CerebroScope; Deutsche Forschungsgemeinschaft, German Research Council: DFG DR 323/5–1 and DFG DR 323/10–1 to JPD; and Bundesministerium fuer Bildung und Forschung (Era-Net Neuron EBio2), with funds from Bundesministerium fuer Bildung und Forschung (0101EW2004) to JPD.

Author information

Authors and Affiliations

Authors

Contributions

SJH developed the code with input from SCJ and PGM and wrote the first draft. BRB contributed additional analysis. KAE conceived of and performed the statistical analysis. JPD and CLL supplied the comparison data. SCJ, SJH, BRB, and JPD edited the article. SCJ conceived of the project, provided supervision, and revised the article. The final manuscript was approved by all authors.

Corresponding author

Correspondence to Stephen C. Jones.

Ethics declarations

Conflicts of interest

Samuel J. Hund, Prahlad G. Menon, and Stephen C. Jones are founding partners and shareholders of CerebroScope. Benjamin R. Brown is a consultant to and shareholder of CerebroScope.

Ethical Approval/Informed Consent

All ethical standards have been met. See section “Retrospective Evaluation of Human Data.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the collection “Spreading Cortical Depolarization”.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 KB)

Supplementary file1 (MP4 6051 KB)

Supplementary file2 (PPTX 475 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hund, S.J., Brown, B.R., Lemale, C.L. et al. Numerical Simulation of Concussive-Generated Cortical Spreading Depolarization to Optimize DC-EEG Electrode Spacing for Noninvasive Visual Detection. Neurocrit Care 37 (Suppl 1), 67–82 (2022). https://doi.org/10.1007/s12028-021-01430-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-021-01430-x

Keywords

Navigation