Skip to main content

Advertisement

Log in

Cerebral Microembolism in Intracerebral Hemorrhage: A Prospective Case–Control Study

  • Original Work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Small and remote acute ischemic lesions may occur in up to one-third of patients with spontaneous intracerebral hemorrhage (ICH). Possible mechanisms include cerebral embolism, small vessel disease, blood pressure variability and others. The embolic mechanism has not been adequately studied. Using transcranial Doppler (TCD), we assessed the incidence of spontaneous microembolic signals (MESs) in patients with acute ICH.

Methods

Twenty acute ICH patients were prospectively evaluated within 48 h of hospital admission. Clinical and imaging data were collected. Continuous TCD monitoring was performed in both middle cerebral arteries for a one-hour period on days 1, 3 and 7 of hospital admission. Monitoring was performed in the emergency room, ICU or ward, according to patient location. We compared the frequency and risk factors for MES in patients with ICH and in 20 age- and gender-matched controls without history of ischemic or hemorrhagic stroke.

Results

The mean age was 57.5 ± 14.1 years, and 60% were male. MESs were detected in 7 patients with ICH and in one control patient without ICH (35% vs 5%, p = 0.048). The frequency of MES on day 1 was 15% (3 of 20 patients), on day 3, 26% (5 of 19 patients) and on day 7, 37.5% (3 of 8 patients). Among patients with ICH, those with MES had a tendency to higher frequencies of dyslipidemia (83% vs 33%, p = 0.13) and lobar location of hemorrhages (71% vs 30%, p = 0.15). Two out of 6 patients with ICH who also underwent MRI had remote DWI lesions, of whom one showed MES on TCD.

Conclusion

Micro-embolic signals occur in over one-third of patients with ICH. Further research is needed to identify the sources of cerebral microembolism and their relationship with small acute infarcts in ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344(19):1450–60.

    CAS  PubMed  Google Scholar 

  2. Prabhakaran S, Gupta R, Ouyang B, et al. Acute brain infarcts after spontaneous intracerebral hemorrhage: a diffusion-weighted imaging study. Stroke. 2010;41(1):89–94.

    PubMed  Google Scholar 

  3. Menon RS, Burgess RE, Wing JJ, et al. Predictors of highly prevalent brain ischemia in intracerebral hemorrhage. Ann Neurol. 2012;71(2):199–205.

    PubMed  PubMed Central  Google Scholar 

  4. Ye X, Cai X, Nie D, et al. Stress-induced hyperglycemia and remote diffusion-weighted imaging lesions in primary intracerebral hemorrhage. Neurocrit Care. 2020;32(2):427–36. https://doi.org/10.1007/s12028-019-00747-y.

    Article  CAS  PubMed  Google Scholar 

  5. Kang DW, Han MK, Kim HJ, et al. New ischemic lesions coexisting with acute intracerebral hemorrhage. Neurology. 2012;79(9):848–55.

    PubMed  Google Scholar 

  6. Auriel E, Gurol ME, Ayres A, et al. Characteristic distributions of intracerebral hemorrhage-associated diffusion-weighted lesions. Neurology. 2012;79(24):2335–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Arsava EM, Kayim-Yildiz O, Oguz KK, Akpinar E, Topcuoglu MA. Elevated admission blood pressure and acute ischemic lesions in spontaneous intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2013;22:250–4.

    PubMed  Google Scholar 

  8. Tsai YH, Lee MH, Weng HH, Chang SW, Yang JT, Huang YC. Fate of diffusion restricted lesions in acute intracerebral hemorrhage. PLoS ONE. 2014;9(8):e105970.

    PubMed  PubMed Central  Google Scholar 

  9. Gioia LC, Kate M, Choi V, et al. Ischemia in intracerebral hemorrhage is associated with leukoaraiosis and hematoma volume, not blood pressure. Reduct Stroke. 2015;46(6):1541–7.

    Google Scholar 

  10. Wu B, Yao X, Lei C, Liu M, Selim MH. Enlarged perivascular spaces and small diffusion-weighted lesions in intracerebral hemorrhage. Neurology. 2015;85(23):2045–52.

    PubMed  PubMed Central  Google Scholar 

  11. Ye X, Gao T, Xu X, et al. Factors associated with remote diffusion-weighted imaging lesions in spontaneous intracerebral hemorrhage. Front Neurol. 2018;9:209.

    PubMed  PubMed Central  Google Scholar 

  12. Boulanger M, Schneckenburger R, Join-Lambert C, et al. Diffusion-weighted imaging hyperintensities in subtypes of acute intracerebral hemorrhage. Stroke. 2019;50:135–42.

    Google Scholar 

  13. Gregoire SM, Charidimou A, Gadapa N, et al. Acute ischaemic brain lesions in intracerebral haemorrhage: multicentre cross-sectional magnetic resonance imaging study. Brain. 2011;134(8):2376–86.

    PubMed  Google Scholar 

  14. Kidwell CS, Rosand J, Norato G, et al. Ischemic lesions, blood pressure dysregulation, and poor outcomes in intracerebral hemorrhage. Neurology. 2017;88:782–8.

    PubMed  PubMed Central  Google Scholar 

  15. Revel-Mouroz P, Viguier A, Cazzola V, et al. Acute ischaemic lesions are associated with cortical superficial siderosis in spontaneous intracerebral hemorrhage. Eur J Neurol. 2019;26:660–6.

    CAS  PubMed  Google Scholar 

  16. Garg RK, Liebling SM, Maas MB, Nemeth AJ, Russell EJ, Naidech AM. Blood pressure reduction, decreased diffusion on MRI, and outcomes after intracerebral hemorrhage. Stroke. 2012;43:67–71.

    PubMed  Google Scholar 

  17. Prabhakaran S, Naidech AM. Ischemic brain injury after intracerebral hemorrhage: a critical review. Stroke. 2012;43(8):2258–63.

    PubMed  Google Scholar 

  18. Flaherty ML, Kissela B, Woo D, et al. The increasing incidence of anticoagulant-associated intracerebral hemorrhage. Neurology. 2007;68:116–21.

    CAS  PubMed  Google Scholar 

  19. Smith EE, Fitzsimmons AL, Nogueira RG, Singhal AB. Spontaneous hyperacute postischemic hemorrhage leading to death. J Neuroimaging. 2004;14(4):361–4.

    PubMed  Google Scholar 

  20. Al-Shahi Salman R, Dennis MS, Sandercock PAG, et al. Effects of antiplatelet therapy after stroke due to intracerebral haemorrhage (RESTART): a randomised, open-label trial. Lancet. 2019;393:2613–23.

    PubMed  Google Scholar 

  21. Ringelstein EB, Droste DW, Babikian VL, et al. Consensus on microembolus detection by TCD. Stroke. 1998;29(3):725–9.

    CAS  PubMed  Google Scholar 

  22. King A, Bath PMW, Markus HS. Clopidogrel versus dipyridamole in addition to aspirin in reducing embolization detected with ambulatory transcranial Doppler: a randomized trial. Stroke. 2011;42:650–5.

    CAS  PubMed  Google Scholar 

  23. Safouris A, Krogias C, Sharma VK, et al. Statin pretreatment and microembolic signals in large artery atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37:1415–22.

    CAS  PubMed  Google Scholar 

  24. Wong KSL, Chen C, Fu J, et al. Clopidogrel plus aspirin versus aspirin alone for reducing embolisation in patients with acute symptomatic cerebral or carotid artery stenosis (CLAIR study): a randomised, open-label, blinded-endpoint trial. Lancet Neurol. 2010;9:489–97.

    CAS  PubMed  Google Scholar 

  25. Markus HS, Droste DW, Kaps M, et al. Dual antiplatelet therapy with clopidogrel and aspirin in symptomatic carotid stenosis evaluated using doppler embolic signal detection: the clopidogrel and aspirin for reduction of emboli in symptomatic carotid stenosis (CARESS) trial. Circulation. 2005;111:2233–40.

    CAS  PubMed  Google Scholar 

  26. Reza M, Velayati A, Chambers BR, Mashhadi H. Microembolic signals in subarachnoid hemorrhage q. J Clin Neurosci. 2009;16(3):390–3. https://doi.org/10.1016/j.jocn.2008.05.013.

    Article  Google Scholar 

  27. Romano JG, Forteza AM, Concha M, et al. Detection of microemboli by transcranial Doppler ultrasonography in aneurysmal subarachnoid hemorrhage. Neurosurgery. 2002;50(5):1026–31.

    PubMed  Google Scholar 

  28. Babikian VL. Basic identification criteria of doppler microembolic signals. Stroke. 1995;26(6):1123. https://doi.org/10.1161/01.STR.26.6.1123.

    Google Scholar 

  29. Topçuoǧlu MA, Arsava EM. Neurosonology of emboli detection and monitoring. Turk Beyin Damar Hast Derg. 2012;18:59–71.

    Google Scholar 

  30. Blaser T, Glanz W, Krueger S, Wallesch CW, Kropf S, Goertler M. Time period required for transcranial Doppler monitoring of embolic signals to predict recurrent risk of embolic transient ischemic attack and stroke from arterial stenosis. Stroke. 2004;35:2155–9.

    PubMed  Google Scholar 

  31. Meretoja A, Strbian D, Putaala J, et al. SMASH-U: a proposal for etiologic classification of intracerebral hemorrhage. Stroke. 2012;43(10):2592–7.

    PubMed  Google Scholar 

  32. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am J Roentgenol. 1987;149:351–6.

    CAS  Google Scholar 

  33. Hemphill JC III, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH score. Stroke. 2001;32:891–7.

    PubMed  Google Scholar 

  34. Banks JL, Marotta CA. Outcomes validity and reliability of the modified rankin scale: implications for stroke clinical trials—a literature review and synthesis. Stroke. 2007;38:1091–6.

    PubMed  Google Scholar 

  35. Ay H, Benner T, Arsava EM, et al. A computerized algorithm for etiologic classification of ischemic stroke: the causative classification of stroke system. Stroke. 2007;38(11):2979–84.

    PubMed  Google Scholar 

  36. Topcuoglu MA, Rocha EA, Siddiqui AK, et al. Isolated upper limb weakness from ischemic stroke: mechanisms and outcome. J Stroke Cerebrovasc Dis. 2018;27(10):2712–9.

    PubMed  Google Scholar 

  37. Kamel H, Navi BB, Merkler AE, et al. Reclassification of ischemic stroke etiological subtypes on the basis of high-risk nonstenosing carotid plaque. Stroke. 2020;51:504–10.

    PubMed  Google Scholar 

  38. Ricarte IF, Dutra LA, Barsottini OGP, et al. Transcranial Doppler findings in antiphospholipid syndrome. Lupus. 2019;28:483–91.

    CAS  PubMed  Google Scholar 

  39. Saloheimo P, Juvela S, Riutta A, Pyhtinen J, Hillbom M. Thromboxane and prostacyclin biosynthesis in patients with acute spontaneous intracerebral hemorrhage. Thromb Res. 2005;115:367–73.

    CAS  PubMed  Google Scholar 

  40. Wilkinson DA, Pandey AS, Thompson BG, Keep RF, Hua Y, Xi G. Injury mechanisms in acute intracerebral hemorrhage. Neuropharmacology. 2018;134:240–8.

    CAS  PubMed  Google Scholar 

  41. Siebler M, Nachtmann A, Sitzer M, et al. Cerebral microembolism and the risk of ischemia in asymptomatic high-grade internal carotid artery stenosis. Stroke. 1995;26:2184–6.

    CAS  PubMed  Google Scholar 

  42. Birnbaum L, Rundek T, Alexandrov AV. Risk stratification of patients with asymptomatic carotid artery stenosis: transcranial Doppler-based evaluation of asymptomatic cerebral microemboli. In: Moussa I, Rundek T, Mohr JP, editors. Asymptomatic carotid artery stenosis: a primer on risk stratification and management. Boca Raton: CRC Press; 2007.

    Google Scholar 

  43. Orlandi G, Fanucchi S, Sartucci F, Murri L. Can microembolic signals identify unstable plaques affecting symptomatology in carotid stenosis? Stroke. 2002;33:1744.

    PubMed  Google Scholar 

  44. Goertler M, Blaser T, Krueger S, Hofmann K, Baeumer M, Wallesch CW. Cessation of embolic signals after antithrombotic prevention is related to reduced risk of recurrent arterioembolic transient ischaemic attack and stroke. J Neurol Neurosurg Psychiatry. 2002;72:338–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ciller CA, Ciller AM, Landreneau F. Detection of emboli after surgery for intracerebral aneurysms. Neurosurgery. 1998;42:490–4.

    Google Scholar 

  46. Ghandehari K. Microembolic signal monitoring in patients with acute stroke. Arch Iran Med. 2002;5(2):94–6.

    Google Scholar 

  47. King A, Markus HS. Doppler embolic signals in cerebrovascular disease and prediction of stroke risk: a systematic review and meta-analysis. Stroke. 2009;40(12):3711–7.

    PubMed  Google Scholar 

  48. Russell D. The detection of cerebral emboli using Doppler ultrasound. In: Newell DW, Aaslid R, editors. Transcranial Doppler. New York, NY: Raven Press Publishers; 1992. p. 207–13.

    Google Scholar 

Download references

Funding

Dr. Eva Rocha’s visiting scholarship at Massachusetts General Hospital and Harvard Medical School, Boston, was sponsored by the Capes Foundation, Ministry of Education, Brazil (Grant No. 88881.133101/2016-01).

Author information

Authors and Affiliations

Authors

Contributions

All authorship requirements have been met, and the final manuscript was approved by all authors

Corresponding author

Correspondence to Eva A. Rocha.

Ethics declarations

Conflicts of Interest

Authors declare that they have no conflict of interest.

Ethical Approval

This study adhered to ethical guidelines, was approved by the Institutional Review Board (IRB), and all patients signed informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, E.A., Rocha, F., Deliberalli, I. et al. Cerebral Microembolism in Intracerebral Hemorrhage: A Prospective Case–Control Study. Neurocrit Care 34, 547–556 (2021). https://doi.org/10.1007/s12028-020-01073-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-020-01073-4

Keywords

Navigation