Skip to main content

Advertisement

Log in

Biospecimens and Molecular and Cellular Biomarkers in Aneurysmal Subarachnoid Hemorrhage Studies: Common Data Elements and Standard Reporting Recommendations

  • Special Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Introduction

Development of clinical biomarkers to guide therapy is an important unmet need in aneurysmal subarachnoid hemorrhage (SAH). A wide spectrum of plausible biomarkers has been reported for SAH, but none have been validated due to significant variabilities in study design, methodology, laboratory techniques, and outcome endpoints.

Methods

A systematic review of SAH biomarkers was performed per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The panel’s recommendations focused on harmonization of (1) target cellular and molecular biomarkers for future investigation in SAH, (2) standardization of best-practice procedures in biospecimen and biomarker studies, and (3) experimental method reporting requirements to facilitate meta-analyses and future validation of putative biomarkers.

Results

No cellular or molecular biomarker has been validated for inclusion as “core” recommendation. Fifty-four studies met inclusion criteria and generated 33 supplemental and emerging biomarker targets. Core recommendations include best-practice protocols for biospecimen collection and handling as well as standardized reporting guidelines to capture the heterogeneity and variabilities in experimental methodologies and biomarker analyses platforms.

Conclusion

Significant variabilities in study design, methodology, laboratory techniques, and outcome endpoints exist in SAH biomarker studies and present significant barriers toward validation and translation of putative biomarkers to clinical use. Adaptation of common data elements, recommended biospecimen protocols, and reporting guidelines will reduce heterogeneity and facilitate future meta-analyses and development of validated clinical biomarkers in SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chou SH, Robertson CS, Participants in the International Multi-disciplinary Consensus Conference on the Multimodality M. Monitoring biomarkers of cellular injury and death in acute brain injury. Neurocrit Care. 2014;21(Suppl 2):S187–214.

    Article  CAS  PubMed  Google Scholar 

  2. Teutsch SM, Bradley LA, Palomaki GE, et al. The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Initiative: methods of the EGAPP Working Group. Genet Med. 2009;11:3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Altman DG, McShane LM, Sauerbrei W, Taube SE. Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): explanation and elaboration. PLoS Med. 2012;9:e1001216.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moore HM, Kelly A, McShane LM, Vaught J. Biospecimen reporting for improved study quality (BRISQ). Clin Chim Acta. 2012;413:1305.

    Article  CAS  PubMed  Google Scholar 

  5. Maas AI, Harrison-Felix CL, Menon D, et al. Standardizing data collection in traumatic brain injury. J Neurotrauma. 2011;28:177–87.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Saver JL, Warach S, Janis S, et al. Standardizing the structure of stroke clinical and epidemiologic research data: the National Institute of Neurological Disorders and Stroke (NINDS) Stroke Common Data Element (CDE) project. Stroke. 2012;43:967–73.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wagner AK, Ren D, Conley YP, et al. Sex and genetic associations with cerebrospinal fluid dopamine and metabolite production after severe traumatic brain injury. J Neurosurg. 2007;106:538–47.

    Article  CAS  PubMed  Google Scholar 

  8. Carrette O, Burkhard PR, Hughes S, Hochstrasser DF, Sanchez JC. Truncated cystatin C in cerebrospiral fluid: technical [corrected] artefact or biological process? Proteomics. 2005;5:3060–5.

    Article  PubMed  Google Scholar 

  9. Hesse C, Larsson H, Fredman P, et al. Measurement of apolipoprotein E (apoE) in cerebrospinal fluid. Neurochem Res. 2000;25:511–7.

    Article  CAS  PubMed  Google Scholar 

  10. Huhmer AF, Biringer RG, Amato H, Fonteh AN, Harrington MG. Protein analysis in human cerebrospinal fluid: physiological aspects, current progress and future challenges. Dis Markers. 2006;22:3–26.

    Article  PubMed  Google Scholar 

  11. Shore PM, Thomas NJ, Clark RS, et al. Continuous versus intermittent cerebrospinal fluid drainage after severe traumatic brain injury in children: effect on biochemical markers. J Neurotrauma. 2004;21:1113–22.

    Article  PubMed  Google Scholar 

  12. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wiesmann M, Missler U, Hagenstrom H, Gottmann D. S-100 protein plasma levels after aneurysmal subarachnoid haemorrhage. Acta Neurochir. 1997;139:1155–60.

    Article  CAS  PubMed  Google Scholar 

  14. Stranjalis G, Korfias S, Psachoulia C, Kouyialis A, Sakas DE, Mendelow AD. The prognostic value of serum S-100B protein in spontaneous subarachnoid haemorrhage. Acta Neurochir (Wien). 2007;149:231–7 (discussion 7–8).

    Article  CAS  Google Scholar 

  15. Oertel M, Schumacher U, McArthur DL, Kastner S, Boker DK. S-100B and NSE: markers of initial impact of subarachnoid haemorrhage and their relation to vasospasm and outcome. J Clin Neurosci. 2006;13:834–40.

    Article  CAS  PubMed  Google Scholar 

  16. Kellermann I, Kleindienst A, Hore N, Buchfelder M, Brandner S. Early CSF and serum S100B concentrations for outcome prediction in traumatic brain injury and subarachnoid hemorrhage. Clin Neurol Neurosurg. 2016;145:79–83.

    Article  PubMed  Google Scholar 

  17. Amiri M, Astrand R, Romner B. Can S100B predict cerebral vasospasms in patients suffering from subarachnoid hemorrhage? Front Neurol. 2013;4:65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bloomfield SM, McKinney J, Smith L, Brisman J. Reliability of S100B in predicting severity of central nervous system injury. Neurocrit Care. 2007;6:121–38.

    Article  CAS  PubMed  Google Scholar 

  19. Halawa I, Vlachogiannis P, Amandusson A, et al. Seizures, CSF neurofilament light and tau in patients with subarachnoid haemorrhage. Acta Neurol Scand. 2018;137:199–203.

    Article  CAS  PubMed  Google Scholar 

  20. Lewis SB, Wolper RA, Miralia L, Yang C, Shaw G. Detection of phosphorylated NF-H in the cerebrospinal fluid and blood of aneurysmal subarachnoid hemorrhage patients. J Cereb Blood Flow Metab. 2008;28:1261–71.

    Article  CAS  PubMed  Google Scholar 

  21. Chou SH, Lan J, Esposito E, et al. Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid hemorrhage. Stroke. 2017;48:2231–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Provencio JJ. Inflammation in subarachnoid hemorrhage and delayed deterioration associated with vasospasm: a review. Acta Neurochir Suppl. 2013;115:233–8.

    PubMed  PubMed Central  Google Scholar 

  23. Weir B, Disney L, Grace M, Roberts P. Daily trends in white blood cell count and temperature after subarachnoid hemorrhage from aneurysm. Neurosurgery. 1989;25:161–5.

    Article  CAS  PubMed  Google Scholar 

  24. Niikawa S, Hara S, Ohe N, Miwa Y, Ohkuma A. Correlation between blood parameters and symptomatic vasospasm in subarachnoid hemorrhage patients. Neurol Med Chir (Tokyo). 1997;37:881–4 (discussion 4–5).

    Article  CAS  Google Scholar 

  25. Muroi C, Hugelshofer M, Seule M, et al. Correlation among systemic inflammatory parameter, occurrence of delayed neurological deficits, and outcome after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2013;72:367–75 (discussion 75).

    Article  PubMed  Google Scholar 

  26. Chou SH, Feske SK, Simmons SL, et al. Elevated peripheral neutrophils and matrix metalloproteinase 9 as biomarkers of functional outcome following subarachnoid hemorrhage. Transl Stroke Res. 2011;2:600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chou SH, Feske SK, Atherton J, et al. Early elevation of serum tumor necrosis factor-alpha is associated with poor outcome in subarachnoid hemorrhage. J Investig Med. 2012;60:1054–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mathiesen T, Edner G, Ulfarsson E, Andersson B. Cerebrospinal fluid interleukin-1 receptor antagonist and tumor necrosis factor-alpha following subarachnoid hemorrhage. J Neurosurg. 1997;87:215–20.

    Article  CAS  PubMed  Google Scholar 

  29. Fassbender K, Hodapp B, Rossol S, et al. Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry. 2001;70:534–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang L, Gao Z. Expression of MMP-9 and IL-6 in patients with subarachnoid hemorrhage and the clinical significance. Exp Ther Med. 2018;15:1510–4.

    CAS  PubMed  Google Scholar 

  31. Chaudhry SR, Stoffel-Wagner B, Kinfe TM, et al. Elevated systemic IL-6 levels in patients with aneurysmal subarachnoid hemorrhage is an unspecific marker for post-SAH complications. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18122580.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lindgren C, Hultin M, Koskinen LO, Lindvall P, Borota L, Naredi S. ADMA levels and arginine/ADMA ratios reflect severity of disease and extent of inflammation after subarachnoid hemorrhage. Neurocrit Care. 2014;21:91–101.

    Article  CAS  PubMed  Google Scholar 

  33. Triglia T, Mezzapesa A, Martin JC, et al. Early matrix metalloproteinase-9 concentration in the first 48 h after aneurysmal subarachnoid haemorrhage predicts delayed cerebral ischaemia: an observational study. Eur J Anaesthesiol. 2016;33:662–9.

    Article  CAS  PubMed  Google Scholar 

  34. Hollig A, Stoffel-Wagner B, Clusmann H, Veldeman M, Schubert GA, Coburn M. Time courses of inflammatory markers after aneurysmal subarachnoid hemorrhage and their possible relevance for future studies. Front Neurol. 2017;8:694.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chou SH, Lee PS, Konigsberg RG, et al. Plasma-type gelsolin is decreased in human blood and cerebrospinal fluid after subarachnoid hemorrhage. Stroke. 2011;42:3624–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pan JW, He LN, Xiao F, Shen J, Zhan RY. Plasma gelsolin levels and outcomes after aneurysmal subarachnoid hemorrhage. Crit Care. 2013;17:R149.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mack WJ, Mocco J, Hoh DJ, et al. Outcome prediction with serum intercellular adhesion molecule-1 levels after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2002;96:71–5.

    Article  CAS  PubMed  Google Scholar 

  38. Zhong W, Zhang Z, Zhao P, et al. The impact of initial systemic inflammatory response after aneurysmal subarachnoid hemorrhage. Turk Neurosurg. 2017;27:346–52.

    PubMed  Google Scholar 

  39. Graetz D, Nagel A, Schlenk F, Sakowitz O, Vajkoczy P, Sarrafzadeh A. High ICP as trigger of proinflammatory IL-6 cytokine activation in aneurysmal subarachnoid hemorrhage. Neurol Res. 2010;32:728–35.

    Article  CAS  PubMed  Google Scholar 

  40. Lenski M, Huge V, Schmutzer M, et al. Inflammatory markers in serum and cerebrospinal fluid for early detection of external ventricular drain-associated ventriculitis in patients with subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2018;31(2):227–33.

    Article  Google Scholar 

  41. Kim GH, Kellner CP, Hahn DK, et al. Monocyte chemoattractant protein-1 predicts outcome and vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2008;109:38–43.

    Article  CAS  PubMed  Google Scholar 

  42. Ma C, Zhou W, Yan Z, Qu M, Bu X. Toll-like receptor 4 (TLR4) is correlated with delayed cerebral ischemia (DCI) and poor prognosis in aneurysmal subarachnoid hemorrhage. J Neurol Sci. 2015;359:67–71.

    Article  CAS  PubMed  Google Scholar 

  43. Savarraj JPJ, Parsha K, Hergenroeder GW, et al. Systematic model of peripheral inflammation after subarachnoid hemorrhage. Neurology. 2017;88:1535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakatsuka Y, Shiba M, Nishikawa H, et al. Acute-phase plasma osteopontin as an independent predictor for poor outcome after aneurysmal subarachnoid hemorrhage. Mol Neurobiol. 2018;55(8):6841–9.

    Article  CAS  PubMed  Google Scholar 

  45. Dai JX, Cai JY, Lin Q, et al. Thioredoxin as a marker for severity and prognosis of aneurysmal subarachnoid hemorrhage. J Neurol Sci. 2016;363:84–9.

    Article  CAS  PubMed  Google Scholar 

  46. Liu H, Liu Y, Zhao J, Liu H, He S. Prognostic value of plasma galectin-3 levels after aneurysmal subarachnoid hemorrhage. Brain Behav. 2016;6:e00543.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nishikawa H, Nakatsuka Y, Shiba M, et al. Increased plasma galectin-3 preceding the development of delayed cerebral infarction and eventual poor outcome in non-severe aneurysmal subarachnoid hemorrhage. Transl Stroke Res. 2018;9:110–9.

    Article  CAS  PubMed  Google Scholar 

  48. Frijns CJ, Fijnheer R, Algra A, van Mourik JA, van Gijn J, Rinkel GJ. Early circulating levels of endothelial cell activation markers in aneurysmal subarachnoid haemorrhage: associations with cerebral ischaemic events and outcome. J Neurol Neurosurg Psychiatry. 2006;77:77–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar M, Cao W, McDaniel JK, et al. Plasma ADAMTS13 activity and von Willebrand factor antigen and activity in patients with subarachnoid haemorrhage. Thromb Haemost. 2017;117:691–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pluta RM. Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther. 2005;105:23–56.

    Article  CAS  PubMed  Google Scholar 

  51. Appel D, Seeberger M, Schwedhelm E, et al. Asymmetric and symmetric dimethylarginines are markers of delayed cerebral ischemia and neurological outcome in patients with subarachnoid hemorrhage. Neurocrit Care. 2018;29(1):84–93.

    Article  CAS  PubMed  Google Scholar 

  52. Schebesch KM, Brawanski A, Bele S, et al. Neuropeptide Y—an early biomarker for cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurol Res. 2013;35:1038–43.

    Article  CAS  PubMed  Google Scholar 

  53. Lanterna LA, Rigoldi M, Tredici G, et al. APOE influences vasospasm and cognition of noncomatose patients with subarachnoid hemorrhage. Neurology. 2005;64:1238–44.

    Article  CAS  PubMed  Google Scholar 

  54. Niskakangas T, Ohman J, Niemela M, Ilveskoski E, Kunnas TA, Karhunen PJ. Association of apolipoprotein E polymorphism with outcome after aneurysmal subarachnoid hemorrhage: a preliminary study. Stroke. 2001;32:1181–4.

    Article  CAS  PubMed  Google Scholar 

  55. Leung CHS, Poon WS, Yu LM, Wong GKC, Ng HK. Apolipoprotein E genotype and outcome in aneurysmal subarachnoid hemorrhage. Stroke. 2002;33:548–52.

    Article  CAS  PubMed  Google Scholar 

  56. Juvela S, Siironen J, Lappalainen J. Apolipoprotein E genotype and outcome after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2009;110:989–95.

    Article  CAS  PubMed  Google Scholar 

  57. Leclerc JL, Blackburn S, Neal D, et al. Haptoglobin phenotype predicts the development of focal and global cerebral vasospasm and may influence outcomes after aneurysmal subarachnoid hemorrhage. Proc Natl Acad Sci USA. 2015;112:1155–60.

    Article  CAS  PubMed  Google Scholar 

  58. Kantor E, Bayir H, Ren D, et al. Haptoglobin genotype and functional outcome after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2014;120:386–90.

    Article  PubMed  Google Scholar 

  59. Yarlagadda S, Rajendran P, Miss JC, et al. Cardiovascular predictors of in-patient mortality after subarachnoid hemorrhage. Neurocrit Care. 2006;5:102–7.

    Article  PubMed  Google Scholar 

  60. Degos V, Apfel CC, Sanchez P, et al. An admission bioclinical score to predict 1-year outcomes in patients undergoing aneurysm coiling. Stroke. 2012;43:1253–9.

    Article  PubMed  Google Scholar 

  61. Naidech AM, Kreiter KT, Janjua N, et al. Cardiac troponin elevation, cardiovascular morbidity, and outcome after subarachnoid hemorrhage. Circulation. 2005;112:2851–6.

    Article  CAS  PubMed  Google Scholar 

  62. van der Bilt I, Hasan D, van den Brink R, et al. Cardiac dysfunction after aneurysmal subarachnoid hemorrhage: relationship with outcome. Neurology. 2014;82:351–8.

    Article  PubMed  Google Scholar 

  63. Ramappa P, Thatai D, Coplin W, et al. Cardiac troponin-I: a predictor of prognosis in subarachnoid hemorrhage. Neurocrit Care. 2008;8:398–403.

    Article  PubMed  Google Scholar 

  64. Zhang L, Wang Z, Qi S. Cardiac troponin elevation and outcome after subarachnoid hemorrhage: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2015;24:2375–84.

    Article  PubMed  Google Scholar 

  65. De Bold AJ. Cardiac natriuretic peptides gene expression and secretion in inflammation. J Investig Med. 2009;57:736.

    Article  Google Scholar 

  66. Taub PR, Fields JD, Wu AH, et al. Elevated BNP is associated with vasospasm-independent cerebral infarction following aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2011;15:13–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rueffert H, Gumplinger A, Renner C, et al. Search for genetic variants in the ryanodine receptor 1 gene in patients with symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2011;15:410–5.

    Article  CAS  PubMed  Google Scholar 

  68. Jamaluddin MS, Weakley SM, Zhang L, Kougias P, Lin PH, Yao Q, Chen C. miRNAs: roles and clinical applications in vascular disease. Expert Rev Mol Diagn. 2011;11(1):79–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lu G, Wong MS, Xiong MZQ, et al. Circulating microRNAs in delayed cerebral infarction after aneurysmal subarachnoid hemorrhage. J Am Heart Assoc. 2017. https://doi.org/10.1161/JAHA.116.005363.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nilsson OG, Brandt L, Ungerstedt U, Saveland H. Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery. 1999;45:1176–84 (discussion 84–5).

    Article  CAS  PubMed  Google Scholar 

  71. Helmy A, Carpenter KL, Menon DK, Pickard JD, Hutchinson PJ. The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab. 2011;31:658–70.

    Article  CAS  PubMed  Google Scholar 

  72. Hillman J, Milos P, Yu ZQ, Sjogren F, Anderson C, Mellergard P. Intracerebral microdialysis in neurosurgical intensive care patients utilising catheters with different molecular cut-off (20 and 100 kD). Acta Neurochir (Wien). 2006;148:319–24 (discussion 24).

    Article  CAS  Google Scholar 

  73. Kerner A, Schlenk F, Sakowitz O, Haux D, Sarrafzadeh A. Impact of hyperglycemia on neurological deficits and extracellular glucose levels in aneurysmal subarachnoid hemorrhage patients. Neurol Res. 2007;29:647–53.

    Article  CAS  PubMed  Google Scholar 

  74. Skjøth-Rasmussen J, Schulz M, Kristensen SR, Bjerre P. Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;100:8–15.

    Article  PubMed  Google Scholar 

  75. Unterberg AW, Sakowitz OW, Sarrafzadeh AS, Benndorf G, Lanksch WR. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2001;94:740–9.

    Article  CAS  PubMed  Google Scholar 

  76. Hlatky R, Valadka AB, Goodman JC, Contant CF, Robertson CS. Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma. 2004;21:894–906.

    Article  PubMed  Google Scholar 

  77. Helbok R, Madineni RC, Schmidt MJ, et al. Intracerebral monitoring of silent infarcts after subarachnoid hemorrhage. Neurocrit Care. 2011;14:162–7.

    Article  PubMed  Google Scholar 

  78. Jacobsen A, Nielsen TH, Nilsson O, Schalen W, Nordstrom CH. Bedside diagnosis of mitochondrial dysfunction in aneurysmal subarachnoid hemorrhage. Acta Neurol Scand. 2014;130:156–63.

    Article  CAS  PubMed  Google Scholar 

  79. Sarrafzadeh A, Haux D, Kuchler I, Lanksch WR, Unterberg AW. Poor-grade aneurysmal subarachnoid hemorrhage: relationship of cerebral metabolism to outcome. J Neurosurg. 2004;100:400–6.

    Article  PubMed  Google Scholar 

  80. Hutchinson PJ, Jalloh I, Helmy A, et al. Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med. 2015;41:1517–28.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Coplin WM, Longstreth WT Jr, Lam AM, et al. Cerebrospinal fluid creatine kinase-BB isoenzyme activity and outcome after subarachnoid hemorrhage. Arch Neurol. 1999;56:1348–52.

    Article  CAS  PubMed  Google Scholar 

  82. Beeftink MM, Ruigrok YM, Rinkel GJ, van den Bergh WM. Relation of serum TNF-alpha and TNF-alpha genotype with delayed cerebral ischemia and outcome in subarachnoid hemorrhage. Neurocrit Care. 2011;15:405–9.

    Article  CAS  PubMed  Google Scholar 

  83. Frontera JA, Provencio JJ, Sehba FA, et al. The role of platelet activation and inflammation in early brain injury following subarachnoid hemorrhage. Neurocrit Care. 2017;26:48–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. de Oliveira Manoel AL, van der Jagt M, Amin-Hanjani S, Bambakidis N, Brophy GM, Bulsara K, Claassen J, Connolly S, Hoffer A, Hoh B, Holloway RG, Kelly AG, Mayer SA, Nakaji P, Rabinstein AA, Vajkoczy P, Vergouwen MDI, Woo H, Zipfel G; Suarez JI, on behalf of the Unruptured Aneurysms and SAH–CDE Project Investigators. Common data elements for unruptured cerebral aneurysms and aneurysmal subarachnoid hemorrhage: recommendations from a working group on hospital course and acute therapies—proposal of a multidisciplinary research group. Neurocritical Care 2019.

  85. Hackenberg KAM, Etminan N, Wintermark M, Meyers PM, Lanzino G, Rüfenacht D, Krings T, Huston H III, Rinkel G, Derdey C, on behalf of the Unruptured Aneurysms and SAH CDE Project Investigators. Common data elements for radiological imaging of patients with subarachnoid hemorrhage—proposal of a Multidisciplinary Research Group. Neurocritical Care 2019.

  86. Suarez JI, Sheikh MK, Macdonald RL, Amin-Hanjani S, Brown RD Jr, de Oliveira Manoel AL, Derdeyn C, Etminan N, Keller E, Leroux PD, Mayer SA, Morita A, Rinkel G, Rufennacht D, Stienen, M, Torner J, Vergouwen, MD, Wong GKC, on behalf of the Unruptured Cerebral Aneurysms and SAH CDE Project Investigators. Common data elements for unruptured cerebral aneurysms and subarachnoid hemorrhage clinical research: a National Institute for Neurological Disorders and Stroke, National Library of Medicine, and Neurocritical Care Society Project. Neurocritical Care 2019.

Download references

Acknowledgements

The views expressed here are those of the authors and do not represent those of the National Institutes of Health (NIH), the National Institute of Neurological Disorders and Stroke (NINDS), or the US Government.

Funding

Logistical support for this project was provided in part through NIH Contract HHSN271201200034C, the Intramural Research Program of the NIH, NLM, The Neurocritical Care Society, and the CHI Baylor St Luke’s Medical Center in Houston, TX. The development of the NINDS SAH CDEs was made possible thanks to the great investment of time and effort of WG members and the members of the NINDS CDE Project and NLM CDE project teams participating from 2015 to 2017.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

SHYC, RLM., and EK were involved in protocol development and wrote and edited the manuscript. The corresponding author confirms that authorship requirements have been met, that the final manuscript was approved by ALL authors, and that this manuscript has not been published elsewhere and is not under consideration by another journal. The UIA and SAH CDEs project adhered to ethical guidelines.

Corresponding author

Correspondence to Sherry H.-Y. Chou.

Ethics declarations

Conflicts of interest

Dr. Macdonald reports personal fees from Edge Therapeutics and grants from Brain Aneurysm Foundation, outside the submitted work. Dr. Chou reports research grants from National Institute of Health/NINDS (K23-NS0738060, the University of Pittsburgh Physicians, and the University of Pittsburgh School of Medicine. Outside the submitted work, Dr. Chou received fees from Edge Therapeutics (site principal investigator, consulting), non-financial support from Merck, consulting fees from the National Institute of Health. Dr. Chou is a co-inventor on a patent MITOCHONDRIAL BIOMARKERS OF, AND THERAPEUTICS AQ15 FOR, CNS INJURY AND DISEASE filed in the United States Patent and Trademark Office as Application 62/3817.

Ethical approval and Informed consent

This work did not involve human or animal participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unruptured Intracranial Aneurysms and SAH CDE Project Investigators are listed in Appendix.

Appendix: SAH WORKING GROUP MEMBERS

Appendix: SAH WORKING GROUP MEMBERS


Steering Committee

Jose I Suarez, MD, FNCS, FANA, Johns Hopkins University School of Medicine, Baltimore, MD, co - Chair

R Loch Macdonald, MD, PhD, University of Toronto, Toronto, ON, Canada, co - Chair

Sepideh Amin-Hanjani, MD—University of Illinois at Chicago, Chicago, IL

Robert D. Brown, Jr., MD, MPH—Mayo Clinic, Rochester, MN

Airton Leonardo de Oliveira Manoel, MD, PhD—University of Toronto, Toronto, Ontario, Canada

Colin P Derdeyn, MD, FACR—University of Iowa, Carver College of Medicine, Iowa City, IA

Nima Etminan, MD—University Hospital Mannheim, Mannheim, Germany

Emanuela Keller, MD—University of Zurich, Zurich, Switzerland

Peter D. LeRoux, MD, FACS—Main Line Health, Wynnewood, PA

Stephan Mayer, MD—Henry Ford Hospital, Detroit, MI

Akio Morita, MD, PhD—Nippon Medical School, Tokyo, Japan

Gabriel Rinkel, MD—University Medical Center, Utrecht, The Netherlands

Daniel Rufennacht, MD—Klinik Hirslanden, Zurich, Switzerland

Martin N. Stienen, MD, FEBNS—University of Zurich, Zurich, Switzerland

James Torner, MSc, PhD—University of Iowa, Iowa City, IA

Mervyn D.I. Vergouwen, MD, PhD—University Medical Center, Utrecht, The Netherlands

George K. C. Wong, MD—Chinese University of Hong Kong, Shatin, Hong Kong


Subject Characteristics Working Group

Robert D. Brown, Jr., MD, MPHMayo Clinic, Rochester, MN, co-Chair

Akio Morita, MD, PhDNippon Medical School, Tokyo, Japan, co-Chair

Philippe Bijlenga, MD, PhD, Geneva University Hospital, Geneva, Switzerland (Superuser)

Nerissa Ko, MD; Cameron G McDougall, MD; J Mocco, MS, MD; Yuuichi Murayama, MD; Marieke J H Werner, MD, PhD


Assessments and Examinations Working Group

Stephan Mayer, MDHenry Ford Hospital, Detroit, MI, co-Chair

Jose I Suarez, MD, FNCS, FANA, The Johns Hopkins University School of Medicine, Baltimore, MD, co-Chair

Rahul Damani, MD, MPH, Baylor College of Medicine, Houston, TX (Superuser)

Joseph Broderick, MD; Raj Dhar, MD, FRCPC; Edward C Jauch, MD, MS, FACEP, FAHA; Peter J Kirkpatrick; Renee H Martin, PhD; J Mocco, MS, MD; Susanne Muehlschlegel, MD, MPH; Tatsushi Mutoh, MD, DVM, PhD; Paul Nyquist, MD, MPH; Daiwai Olson, RN, PhD; Jorge H Mejia-Mantilla, MD, MSc.


Hospital Course and Acute Therapies Working Group

Sepideh Amin-Hanjani, MDUniversity of Illinois at Chicago, Chicago, IL, co-Chair

Airton Leonardo de Oliveira Manoel, MD, PhDUniversity of Toronto, Toronto, Ontario, Canada, co-Chair (Superuser)

Mathieu van der Jagt, MD, PhD, Erasmus Medical Center, Rotterdam, The Netherlands (Superuser)

Nicholas Bambakidis, MD; Gretchen Brophy, PharmD, BCPS, FCCP, FCCM, FNCS; Ketan Bulsara, MD; Jan Claassen, MD, PhD; E Sander Connolly, MD, FACS; S Alan Hoffer, MD; Brian L Hoh, MD, FACS; Robert G Holloway, MD, MPH; Adam Kelly, MD; Stephan Mayer, MD; Peter Nakaji, MD; Alejandro Rabinstein, MD; Jose I Suarez, MD, FNCS, FANA; Peter Vajkoczy, MD; Mervyn D. I. Vergouwen, MD, PhD; Henry Woo, MD; Gregory J Zipfel, MD.


Biospecimens and Biomarkers Working Group

Emanuela Keller, MDUniversity of Zurich, Zurich, Switzerland, co-Chair (Superuser)

R Loch Macdonald, MD, PhD, University of Toronto, Toronto, ON, Canada, co-Chair

Sherry H-Y Chou, MD, MMSc (Superuser); Sylvain Doré, PhD, FAHA; Aaron S Dumont, MD; Murat Gunel, MD, FACS, FAHA; Hidetoshi Kasuya, MD; Alexander Roederer, PhD; Ynte Ruigrok, MD; Paul M Vespa, MD, FCCM, FAAN, FANA, FNCS; Asita Simone Sarrafzadeh-Khorrasani, PhD.


Imaging Working Group

Colin P Derdeyn, MD, FACRUniversity of Iowa, Carver College of Medicine, Iowa City, IA, co-Chair

Nima Etminan, MD University Hospital Mannheim, Mannheim, Germany, co-Chair

Katharina Hackenberg, MD, University Hospital Mannheim, Mannheim, Germany (Superuser)

John Huston, III, MD; Timo Krings, MD, PhD, FRCPC; Giuseppe Lanzino, MD; Philip M Meyers, MD, FACR, FSIR, FAHA; Gabriel Rinkel, MD; Daniel Rufennacht, MD; Max Wintermark, MD.


Long-Term Therapies Working Group

James Torner, MSc, PhDUniversity of Iowa, Iowa City, IA, co-Chair (Superuser)

George K. C. Wong, MDChinese University of Hong Kong, Shatin, Hong Kong, co-Chair (Superuser)

Joseph Broderick, MD; Janis Daly, PhD, MS; Christopher Ogilvy, MD; Denise H Rhoney, PharmD, FCCP, FCCM, FNCS; YB Roos, PhD; Adnan Siddiqui, MD, PhD, FAHA.


Unruptured Intracranial Aneurysms Working Group

Nima Etminan, MDUniversity Hospital Mannheim, Mannheim, Germany, co-Chair

Gabriel Rinkel, MDUniversity Medical Center, Utrecht, The Netherlands, co-Chair

Katharina Hackenberg, MD, University Hospital Mannheim, Mannheim, Germany (Superuser)

Ale Algra, MD, FAHA; Juhanna Frösen, MD; David Hasan, MD; Seppo Juvela, MD, PhD; David J Langer, MD; Philip M Meyers, MD, FACR, FSIR, FAHA; Akio Morita, MD, PhD; Rustam Al-Shahi Salman, MA, PhD, FRCP.


Outcomes and Endpoints Working Group

Martin N. Stienen, MD, FEBNSUniversity of Zurich, Zurich, Switzerland, co-Chair (Superuser).

Mervyn D.I. Vergouwen, MD, PhDUniversity Medical Center, Utrecht, The Netherlands, co-Chair.

Daniel Hanggi, MD; R Loch Macdonald, MD, PhD; Tom Schweizer, PhD; Johanna Visser-Meily, MD, PhD.


National Library of Medicine CDE Team

Liz Amos, MLIS, National Information Center on Health Services Research and Health Care Technology, National Library of Medicine.

Christophe Ludet, MS, National Library of Medicine, Bethesda, MD.


NINDS CDE Team

Claudia Moy, PhD, NINDS, Bethesda, MD

Joanne Odenkirchen, MPH, NINDS, Bethesda, MD

Sherita Ala’i, MS, The Emmes Corporation, Rockville, MD

Joy Esterlitz, MS, The Emmes Corporation, Rockville, MD

Kristen Joseph, MA, The Emmes Corporation, Rockville, MD

Muniza Sheikh, MS, MBA, The Emmes Corporation, Rockville, MD

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, S.HY., Macdonald, R.L., Keller, E. et al. Biospecimens and Molecular and Cellular Biomarkers in Aneurysmal Subarachnoid Hemorrhage Studies: Common Data Elements and Standard Reporting Recommendations. Neurocrit Care 30 (Suppl 1), 46–59 (2019). https://doi.org/10.1007/s12028-019-00725-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-019-00725-4

Keywords

Navigation