Skip to main content

Advertisement

Log in

Post-ischemic Intravenous Administration of Allogeneic Dental Pulp-Derived Neurosphere Cells Ameliorated Outcomes of Severe Forebrain Ischemia in Rats

  • Translational Research
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Transplantation of bone marrow or adipose-derived mesenchymal stem cells (MSCs) for various neurological disorders has yielded promising results in models of focal cerebral ischemia. Dental pulp stem cells (DPSCs) are a type of MSC. In serum-free culture, they can form neurospheres that contain nestin-positive neuronal progenitor cells. We hypothesized that transplantation of dental pulp-derived neurosphere cells would ameliorate outcomes of global cerebral ischemia, the pathophysiology of which is known to resist conventional treatments. We also hypothesized that transplantation of dental pulp-derived cells would provide some neuroprotection in this pathology due to the presence of DPSCs.

Methods

Using adult rats, ischemia was induced by two-vessel occlusion of both carotid arteries in combination with systemic hypotension. Allogeneic dental pulp cells from juvenile rats were cultured in advance in serum-free medium to obtain neurospheres. Dental pulp-derived neurosphere cells or dental pulp-derived cells were intravenously administered at 3 h after ischemic insult, with normal saline as a control. Animals were observed for 14 days after ischemia. Neurological outcome was assessed using the water-maze test and neuromotor test. Histological outcome was measured by counting the percentage of dead neurons in the hippocampal CA1 and CA3 regions.

Results

Transplantation of both dental pulp-derived neurosphere cells and dental pulp-derived cells significantly improved survival rate and water-maze test results. Neurosphere cell transplantation was related to significantly better neuromotor test and histological outcomes, as indicated by the reduced percentage of dead neurons in CA1.

Conclusions

Transplantation of dental pulp-derived neurosphere cells ameliorated outcomes of global cerebral ischemia. It was also demonstrated that dental pulp-derived cell administration provided some neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schneider A, Böttiger BW, Popp E. Cerebral resuscitation after cardiocirculatory arrest. Anesth Analg. 2009;108(3):971–9.

    Article  PubMed  Google Scholar 

  2. Crumrine RC, Bergstrand K, Cooper AT, Faison WL, Cooper BR. Lamotrigine protects hippocampal CA1 neurons from ischemic damage after cardiac arrest. Stroke. 1997;28(11):2230–7.

    Article  CAS  PubMed  Google Scholar 

  3. Xu K, Puchowicz MA, Lust WD, LaManna JC. Adenosine treatment delays postischemic hippocampal CA1 loss after cardiac arrest and resuscitation in rats. Brain Res. 2006;1071(1):208–17.

    Article  CAS  PubMed  Google Scholar 

  4. Lagina AT, Calo L, Deogracias M, Sanderson T, Kumar R, Wider J, et al. Combination therapy with insulin-like growth factor-1 and hypothermia synergistically improves outcome after transient global brain ischemia in the rat. Acad Emerg Med. 2013;20(4):344–51.

    Article  PubMed  Google Scholar 

  5. Noppens RR, Kofler J, Grafe MR, Hurn PD, Traystman RJ. Estradiol after cardiac arrest and cardiopulmonary resuscitation is neuroprotective and mediated through estrogen receptor-β. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2009;29(2):277–86.

    Article  CAS  Google Scholar 

  6. Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, et al. Part 8: post-cardiac arrest care 2015 american heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 suppl 2):S465–82.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Arrich J, Holzer M, Havel C, Müllner M, Herkner H. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database Syst Rev. 2016;(2). Article No. CD004128. doi:10.1002/14651858.CD004128.pub4.

  8. Zheng W, Honmou O, Miyata K, Harada K, Suzuki J, Liu H, et al. Therapeutic benefits of human mesenchymal stem cells derived from bone marrow after global cerebral ischemia. Brain Res. 2010;15(1310):8–16.

    Article  Google Scholar 

  9. Ohtaki H, Ylostalo JH, Foraker JE, Robinson AP, Reger RL, Shioda S, et al. Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci USA. 2008;105(38):14638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chung TN, Kim JH, Choi BY, Chung SP, Kwon SW, Suh SW. Adipose-derived mesenchymal stem cells reduce neuronal death after transient global cerebral ischemia through prevention of blood-brain barrier disruption and endothelial damage. Stem Cells Transl Med. 2015;4(2):178–85.

    Article  CAS  PubMed  Google Scholar 

  11. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81(8):531–5.

    Article  CAS  PubMed  Google Scholar 

  12. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest. 2012;122(1):80–90.

    CAS  PubMed  Google Scholar 

  13. Tamaki Y, Nakahara T, Ishikawa H, Sato S. In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow. Odontology. 2012;101(2):121–32.

    Article  PubMed  Google Scholar 

  14. Sugiyama M, Iohara K, Wakita H, Hattori H, Ueda M, Matsushita K, et al. Dental pulp-derived CD31 −/CD146 − side population stem/progenitor cells enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A. 2011;17(9–10):1303–11.

    Article  CAS  PubMed  Google Scholar 

  15. Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A. 2013;19(1–2):24–9.

    Article  CAS  PubMed  Google Scholar 

  16. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci. 2003;100(10):5807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Poltavtseva RA, Nikonova YA, Selezneva II, Yaroslavtseva AK, Stepanenko VN, Esipov RS, et al. Mesenchymal stem cells from human dental pulp: isolation, characteristics, and potencies of targeted differentiation. Bull Exp Biol Med. 2014;158(1):164–9.

    Article  CAS  PubMed  Google Scholar 

  18. Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Okano T, et al. Neurosphere generation from dental pulp of adult rat incisor. Eur J Neurosci. 2008;27(3):538–48.

    Article  PubMed  Google Scholar 

  19. Conti L, Cattaneo E. Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci. 2010;11(3):176–87.

    CAS  PubMed  Google Scholar 

  20. Capone C, Frigerio S, Fumagalli S, Gelati M, Principato M-C, Storini C, et al. Neurosphere-derived cells exert a neuroprotective action by changing the ischemic microenvironment. Plos One. 2007;2(4):e373.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nosrat IV, Widenfalk J, Olson L, Nosrat CA. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol. 2001;238(1):120–32.

    Article  CAS  PubMed  Google Scholar 

  22. Miura Y, Kanazawa K, Nasu I. Preischemic Administration of sevoflurane does not exert dose-dependent effects on the outcome of severe forebrain ischemia in rats. J Neurosurg Anesthesiol. 2015;27(3):216–21.

    Article  PubMed  Google Scholar 

  23. Pacey L, Stead S, Gleave J, Tomczyk K, Doering L. Neural stem cell culture: neurosphere generation, microscopical analysis and cryopreservation. Protoc Exch [Internet]. 2006 Aug 25; http://www.nature.com/protocolexchange/protocols/77.

  24. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  25. Miura Y, Grocott HP, Bart RD, Pearlstein RD, Dexter F, Warner DS. Differential effects of anesthetic agents on outcome from near-complete but not incomplete global ischemia in the rat. Anesthesiology. 1998;89(2):391–400.

    Article  CAS  PubMed  Google Scholar 

  26. Mangus DB, Huang L, Applegate PM, Gatling JW, Zhang J, Applegate RL. A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (Part I—protection via specific pathways). Med Gas Res. 2014;1(4):9.

    Article  Google Scholar 

  27. Huang L, Applegate PM, Gatling JW, Mangus DB, Zhang J, Applegate RL. A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (part II-comprehensive protection). Med Gas Res. 2014;20(4):10.

    Article  Google Scholar 

  28. Silverman MG, Scirica BM. Cardiac arrest and therapeutic hypothermia. Trends Cardiovasc Med. 2016;26(4):337–44.

    Article  PubMed  Google Scholar 

  29. Hao L, Zou Z, Tian H, Zhang Y, Zhou H, Liu L. Stem cell-based therapies for ischemic stroke. Biomed Res Int. 2014;2014:468748.

    PubMed  PubMed Central  Google Scholar 

  30. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011;134(6):1790–807.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kawaguchi M, Kimbro JR, Drummond JC, Cole DJ, Kelly PJ, Patel PM. Isoflurane delays but does not prevent cerebral infarction in rats subjected to focal ischemia. Anesthesiology. 2000;92(5):1335–42.

    Article  CAS  PubMed  Google Scholar 

  32. Nasu I, Yokoo N, Takaoka S, Takata K, Hoshikawa T, Okada M, et al. The dose-dependent effects of isoflurane on outcome from severe forebrain ischemia in the rat. Anesth Analg. 2006;103(2):413–8.

    Article  CAS  PubMed  Google Scholar 

  33. Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. IV infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience. 2005;136(1):161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu L, Eckert MA, Riazifar H, Kang D-K, Agalliu D, Zhao W. From blood to the brain: can systemically transplanted mesenchymal stem cells cross the blood-brain barrier? Stem Cells Int. 2013;2013:435093.

    PubMed  PubMed Central  Google Scholar 

  35. Li Y, Chopp M. Marrow stromal cell transplantation in stroke and traumatic brain injury. Neurosci Lett. 2009;456(3):120–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res. 2003;73(6):778–86.

    Article  CAS  PubMed  Google Scholar 

  37. Shen LH, Li Y, Chen J, Cui Y, Zhang C, Kapke A, et al. One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke. 2007;38(7):2150–6.

    Article  PubMed  Google Scholar 

  38. Tamaoki N, Takahashi K, Tanaka T, Ichisaka T, Aoki H, Takeda-Kawaguchi T, et al. Dental pulp cells for induced pluripotent stem cell banking. J Dent Res. 2010;89(8):773–8.

    Article  CAS  PubMed  Google Scholar 

  39. Chun SY, Soker S, Jang Y-J, Kwon TG, Yoo ES. Differentiation of human dental pulp stem cells into dopaminergic neuron-like cells in vitro. J Korean Med Sci. 2016;31(2):171–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the “High-Tech Research Center” Project for Private Universities, with a matching fund subsidy from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihide Miura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumasaka, A., Kanazawa, K., Ohke, H. et al. Post-ischemic Intravenous Administration of Allogeneic Dental Pulp-Derived Neurosphere Cells Ameliorated Outcomes of Severe Forebrain Ischemia in Rats. Neurocrit Care 26, 133–142 (2017). https://doi.org/10.1007/s12028-016-0304-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-016-0304-4

Keywords

Navigation