Skip to main content
Log in

Early Quantitative Gamma-Band EEG Marker is Associated with Outcomes After Cardiac Arrest and Targeted Temperature Management

  • Translational Research
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Brain recovery after cardiac arrest (CA) is sensitive to temperature. Yet the effect of temperature management on different EEG frequency bands has not been elucidated. A novel quantitative EEG algorithm, sub-band information quantity (SIQ), was applied to evaluate EEG recovery and outcomes after CA.

Methods

Twenty-four Wistar rats undergoing 7-min CA were randomly assigned to immediate hypothermia (32–34 °C), normothermia (36.5–37.5 °C), or hyperthermia (38.5–39.5 °C) (n = 8). EEG was recorded continuously for the first 8 h and then for serial 30-min epochs daily. The neurologic deficit score (NDS) at 72-h was the primary functional outcome. Another four rats without brain injury were added as a control.

Results

Better recovery of gamma-band SIQ was found in the hypothermia group (0.60 ± 0.03) compared with the normothermia group (0.40 ± 0.03) (p < 0.01) and in the normothermia group compared with the hyperthermia group (0.34 ± 0.03) (p < 0.05). The NDS was also improved in the lower temperature groups: hypothermia [median (25th, 75th), 74 (61, 74)] versus normothermia [49 (47, 61)] versus hyperthermia [43 (0, 50)] (p < 0.01). Throughout the 72-h experiment, the gamma-band SIQ showed the strongest correlation at every time point (ranging 0.520–0.788 from 30-min to 72-h post-resuscitation, all p < 0.05) whereas the delta-band SIQ had poor correlation with the 72-h NDS. No significant difference of sub-band EEG was found with temperature manipulation alone.

Conclusions

Recovery of gamma-band SIQ-qEEG was strongly associated with functional outcomes after CA. Induced hypothermia was associated with faster recovery of gamma-band SIQ and improved functional outcomes. Targeted temperature management primarily affected gamma frequency oscillations but not delta rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–292.

    Article  PubMed  Google Scholar 

  2. Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Bottiger BW, Callaway C, Clark RS, Geocadin RG, Jauch EC, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation. 2008;118(23):2452–83.

    Article  PubMed  Google Scholar 

  3. Leary M, Grossestreuer AV, Iannacone S, Gonzalez M, Shofer FS, Povey C, Wendell G, Archer SE, Gaieski DF, Abella BS. Pyrexia and neurologic outcomes after therapeutic hypothermia for cardiac arrest. Resuscitation. 2013;84(8):1056–61.

    Article  PubMed  Google Scholar 

  4. Bro-Jeppesen J, Hassager C, Wanscher M, Soholm H, Thomsen JH, Lippert FK, Moller JE, Kober L, Kjaergaard J. Post-hypothermia fever is associated with increased mortality after out-of-hospital cardiac arrest. Resuscitation. 2013;84(12):1734–40.

    Article  PubMed  Google Scholar 

  5. Hypothermia after Cardiac Arrest Study G. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549–56.

    Article  Google Scholar 

  6. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. New Engl J Med. 2002;346(8):557–63.

    Article  PubMed  Google Scholar 

  7. Thomassen A, Sorensen K, Wernberg M. The prognostic value of EEG in coma survivors after cardiac arrest. Acta Anaesthesiol Scand. 1978;22(5):483–90.

    Article  CAS  PubMed  Google Scholar 

  8. Binnie CD, Prior PF, Lloyd DS, Scott DF, Margerison JH. Electroencephalographic prediction of fatal anoxic brain damage after resuscitation from cardiac arrest. Br Med J. 1970;4(5730):265–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Berger H. Über das elektrenkephalogramm des menschen. Eur Arch Psychiatry Clin Neurosci. 1929;87(1):527–70.

    Google Scholar 

  10. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304(5679):1926–9.

    Article  CAS  PubMed  Google Scholar 

  11. Uhlhaas PJ, Pipa G, Lima B, Melloni L, Neuenschwander S, Nikolic D, Singer W. Neural synchrony in cortical networks: history, concept and current status. Front Integr Neurosci. 2009;3:17.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11(2):100–13.

    Article  CAS  PubMed  Google Scholar 

  13. Jia X, Koenig MA, Nickl R, Zhen G, Thakor NV, Geocadin RG. Early electrophysiologic markers predict functional outcome associated with temperature manipulation after cardiac arrest in rats. Crit Care Med. 2008;36(6):1909–16.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Shin HC, Tong S, Yamashita S, Jia X, Geocadin RG, Thakor NV. Quantitative EEG and effect of hypothermia on brain recovery after cardiac arrest. IEEE Trans Biomed Eng. 2006;53(6):1016–23.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Shin HC, Jia X, Nickl R, Geocadin RG, Thakor NV. A subband-based information measure of EEG during brain injury and recovery after cardiac arrest. IEEE Trans Biomed Eng. 2008;55(8):1985–90.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Jia X, Koenig MA, Venkatraman A, Thakor NV, Geocadin RG. Post-cardiac arrest temperature manipulation alters early EEG bursting in rats. Resuscitation. 2008;78(3):367–73.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Jia X, Koenig MA, Shin HC, Zhen G, Pardo CA, Hanley DF, Thakor NV, Geocadin RG. Improving neurological outcomes post-cardiac arrest in a rat model: immediate hypothermia and quantitative EEG monitoring. Resuscitation. 2008;76(3):431–42.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. 2006;52(1):155–68.

    Article  CAS  PubMed  Google Scholar 

  19. Fugate JE, Wijdicks EF, Mandrekar J, Claassen DO, Manno EM, White RD, Bell MR, Rabinstein AA. Predictors of neurologic outcome in hypothermia after cardiac arrest. Ann Neurol. 2010;68(6):907–14.

    Article  PubMed  Google Scholar 

  20. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346(8):557–63.

    Article  PubMed  Google Scholar 

  21. Horn M, Schlote W, Henrich HA. Global cerebral ischemia and subsequent selective hypothermia. A neuropathological and morphometrical study on ischemic neuronal damage in cat. Acta Neuropathol. 1991;81(4):443–9.

    Article  CAS  PubMed  Google Scholar 

  22. D’Cruz BJ, Fertig KC, Filiano AJ, Hicks SD, DeFranco DB, Callaway CW. Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation. J Cereb Blood Flow Metab. 2002;22(7):843–51.

    Article  PubMed  Google Scholar 

  23. Hicks SD, DeFranco DB, Callaway CW. Hypothermia during reperfusion after asphyxial cardiac arrest improves functional recovery and selectively alters stress-induced protein expression. J Cereb Blood Flow Metab. 2000;20(3):520–30.

    Article  CAS  PubMed  Google Scholar 

  24. Jia X, Kohn A. Gamma rhythms in the brain. PLoS Biol. 2011;9(4):e1001045.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci. 1995;18:555–86.

    Article  CAS  PubMed  Google Scholar 

  26. Basar E, Basar-Eroglu C, Rahn E, Schurmann M. Sensory and cognitive components of brain resonance responses. An analysis of responsiveness in human and cat brain upon visual and auditory stimulation. Acta Otolaryngol Suppl. 1991;491:25–34 discussion 35.

    Article  CAS  PubMed  Google Scholar 

  27. Adrian ED. Olfactory reactions in the brain of the hedgehog. J Physiol. 1942;100(4):459–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kaiser J, Lutzenberger W. Human gamma-band activity: a window to cognitive processing. Neuroreport. 2005;16(3):207–11.

    Article  PubMed  Google Scholar 

  29. Pulvermuller F, Lutzenberger W, Preissl H, Birbaumer N. Spectral responses in the gamma-band: physiological signs of higher cognitive processes? Neuroreport. 1995;6(15):2059–64.

    Article  CAS  PubMed  Google Scholar 

  30. Miltner WH, Braun C, Arnold M, Witte H, Taub E. Coherence of gamma-band EEG activity as a basis for associative learning. Nature. 1999;397(6718):434–6.

    Article  CAS  PubMed  Google Scholar 

  31. Llinas R, Ribary U. Coherent 40-Hz oscillation characterizes dream state in humans. Proc Natl Acad Sci USA. 1993;90(5):2078–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N. Self-regulation of the brain and behavior. Berlin: Springer; 1984.

    Book  Google Scholar 

  33. Steriade M, Amzica F, Contreras D. Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. J Neurosci. 1996;16(1):392–417.

    CAS  PubMed  Google Scholar 

  34. Traub RD, Bibbig A, LeBeau FE, Buhl EH, Whittington MA. Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Annu Rev Neurosci. 2004;27:247–78.

    Article  CAS  PubMed  Google Scholar 

  35. Wang XJ, Buzsaki G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci. 1996;16(20):6402–13.

    CAS  PubMed  Google Scholar 

  36. White BC, Sullivan JM, DeGracia DJ, O’Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci. 2000;179(S 1-2):1–33.

    Article  CAS  PubMed  Google Scholar 

  37. Oku K, Kuboyama K, Safar P, Obrist W, Sterz F, Leonov Y, Tisherman SA. Cerebral and systemic arteriovenous oxygen monitoring after cardiac arrest. Inadequate cerebral oxygen delivery. Resuscitation. 1994;27(2):141–52.

    Article  CAS  PubMed  Google Scholar 

  38. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischemic stroke: an integrated view. Trends Neurosci. 1999;22(9):391–7.

    Article  CAS  PubMed  Google Scholar 

  39. Morimoto T, Nagao H, Yoshimatsu M, Yoshida K, Matsuda H. Pathogenic role of glutamate in hyperthermia-induced seizures. Epilepsia. 1993;34(3):447–52.

    Article  CAS  PubMed  Google Scholar 

  40. Suehiro E, Fujisawa H, Ito H, Ishikawa T, Maekawa T. Brain temperature modifies glutamate neurotoxicity in vivo. J Neurotrauma. 1999;16(4):285–97.

    Article  CAS  PubMed  Google Scholar 

  41. Qu L, Liu X, Wu C, Leung LS. Hyperthermia decreases GABAergic synaptic transmission in hippocampal neurons of immature rats. Neurobiol Dis. 2007;27(3):320–7.

    Article  CAS  PubMed  Google Scholar 

  42. Busto R, Globus MY, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke. 1989;20(7):904–10.

    Article  CAS  PubMed  Google Scholar 

  43. Nolan JP, Morley PT, Vanden Hoek TL, Hickey RW, Kloeck WG, Billi J, Bottiger BW, Morley PT, Nolan JP, Okada K, et al. Therapeutic hypothermia after cardiac arrest: an advisory statement by the advanced life support task force of the International Liaison Committee on Resuscitation. Circulation. 2003;108(1):118–21.

    Article  CAS  PubMed  Google Scholar 

  44. Sharbrough FW, Messick JM Jr, Sundt TM Jr. Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke. 1973;4(4):674–83.

    Article  CAS  PubMed  Google Scholar 

  45. Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994;36(4):557–65.

    Article  CAS  PubMed  Google Scholar 

  46. Jordan KG. Emergency EEG and continuous EEG monitoring in acute ischemic stroke. J Clin Neurophysiol. 2004;21(5):341–52.

    PubMed  Google Scholar 

  47. Kawakami S, Hossmann KA. Electrophysiological recovery after compression ischemia of the rat brain. J Neurol. 1977;217(1):31–42.

    Article  CAS  PubMed  Google Scholar 

  48. Amzica F, Kroeger D. Cellular mechanisms underlying EEG waveforms during coma. Epilepsia. 2011;52(Suppl 8):25–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by R01HL118084 from NIH (to XJ) and 09SDG2110140 from American Heart Association (to XJ). Deng and Jia were supported by NIH R01HL118084 and AHA 09SDG2110140. Dr. Jia was supported in partial by Maryland Stem Cell Research Fund (2013-MSCRFE-146-00) (to XJ).

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Jia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 24 kb)

Supplementary material 1 (DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, R., Koenig, M.A., Young, L.M. et al. Early Quantitative Gamma-Band EEG Marker is Associated with Outcomes After Cardiac Arrest and Targeted Temperature Management. Neurocrit Care 23, 262–273 (2015). https://doi.org/10.1007/s12028-015-0157-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-015-0157-2

Keywords

Navigation