Skip to main content

Advertisement

Log in

Shunt-Dependent Hydrocephalus After Aneurysmal Subarachnoid Hemorrhage: The Role of Intrathecal Interleukin-6

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Object

Aneurysmal subarachnoid hemorrhage (SAH) has been reported to induce an intrathecal inflammatory reaction reflected by cytokine release, particularly interleukin-6 (IL-6), which correlates with early brain damage and poor outcome. The present study examines intrathecal IL-6 production together with clinical parameters, as a predictor of posthemorrhagic shunt dependency.

Methods

Among 186 SAH patients admitted between July 2010 and December 2012, 82 received external ventricular drainage due to acute hydrocephalus. In these patients, cerebrospinal fluid (CSF) concentrations of IL-6 were measured within the first 14 days after SAH. Patients whose IL-6 values were not determined regularly and those who did not survive until discharge were excluded. The peak value of IL-6, ventricular infection during the hospital stay, microbial CSF culture, patient’s age and sex, Hunt and Hess grade, and aneurysm location were assumed as predictive for shunt dependency.

Results

Sixty-nine patients were included, 24 of whom underwent shunt surgery. Peak IL-6 values of ≥10,000 pg/ml were significantly associated with a higher incidence of shunt dependency (p = 0.009). Additional risk factors were aneurysm location on the anterior cerebral artery and its branches or in the posterior circulation (p = 0.025), and age ≥60 years (p = 0.014). In a multivariate analysis, IL-6 ≥10,000 pg/ml appeared to be the only independent predictor for shunt dependency (p = 0.029)

Conclusion

CSF IL-6 values of ≥10,000 pg/ml in the early post-SAH period may be a useful diagnostic tool for predicting shunt dependency in patients with acute posthemorrhagic hydrocephalus. The development of shunt-dependent posthemorrhagic hydrocephalus remains a multifactorial process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kwon JH, Sung SK, Song YJ, et al. Predisposing factors related to shunt-dependent chronic hydrocephalus after aneurysmal subarachnoid hemorrhage. J Korean Neurosurg Soc. 2008;43(4):177–81.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hasan D, Vermeulen M, Wijdicks EF, et al. Management problems in acute hydrocephalus after subarachnoid hemorrhage. Stroke. 1989;20(6):747–53.

    Article  CAS  PubMed  Google Scholar 

  3. van Gijn J, Hijdra A, Wijdicks EF, et al. Acute hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurosurg. 1985;63(3):355–62.

    Article  PubMed  Google Scholar 

  4. Dorai Z, Hynan LS, Kopitnik TA, et al. Factors related to hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2003;52(4):763–9 discussion 9–71.

    Article  PubMed  Google Scholar 

  5. Vale FL, Bradley EL, Fisher WS 3rd. The relationship of subarachnoid hemorrhage and the need for postoperative shunting. J Neurosurg. 1997;86(3):462–6.

    Article  CAS  PubMed  Google Scholar 

  6. Brandner S, Xu Y, Schmidt C, et al. Shunt-dependent hydrocephalus following subarachnoid hemorrhage correlates with increased S100B levels in cerebrospinal fluid and serum. Acta Neurochir Suppl. 2012;114:217–20.

    Article  CAS  PubMed  Google Scholar 

  7. Chan M, Alaraj A, Calderon M, et al. Prediction of ventriculoperitoneal shunt dependency in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2009;110(1):44–9.

    Article  PubMed  Google Scholar 

  8. Lai L, Morgan MK. Predictors of in-hospital shunt-dependent hydrocephalus following rupture of cerebral aneurysms. J Clin Neurosci. 2013;20(8):1134–8.

    Article  PubMed  Google Scholar 

  9. Rincon F, Gordon E, Starke RM, et al. Predictors of long-term shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage. Clin Artic J Neurosurg. 2010;113(4):774–80.

    Article  Google Scholar 

  10. Xu H, Zhang SL, Tan GW, et al. Reactive gliosis and neuroinflammation in rats with communicating hydrocephalus. Neuroscience. 2012;218:317–25.

    Article  CAS  PubMed  Google Scholar 

  11. Deren KE, Packer M, Forsyth J, et al. Reactive astrocytosis, microgliosis and inflammation in rats with neonatal hydrocephalus. Exp Neurol. 2010;226(1):110–9.

    Article  PubMed  Google Scholar 

  12. Schmitz T, Heep A, Groenendaal F, et al. Interleukin-1 beta, interleukin-18, and interferon-gamma expression in the cerebrospinal fluid of premature infants with posthemorrhagic hydrocephalus–markers of white matter damage? Pediatr Res. 2007;61(6):722–6.

    Article  CAS  PubMed  Google Scholar 

  13. Schade RP, Schinkel J, Roelandse FW, et al. Lack of value of routine analysis of cerebrospinal fluid for prediction and diagnosis of external drainage-related bacterial meningitis. J Neurosurg. 2006;104(1):101–8.

    Article  PubMed  Google Scholar 

  14. Schlenk F, Frieler K, Nagel A, et al. Cerebral microdialysis for detection of bacterial meningitis in aneurysmal subarachnoid hemorrhage patients: a cohort study. Crit Care. 2009;13(1):R2.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ross D, Rosegay H, Pons V. Differentiation of aseptic and bacterial meningitis in postoperative neurosurgical patients. J Neurosurg. 1988;69(5):669–74.

    Article  CAS  PubMed  Google Scholar 

  16. Sercombe R, Dinh YR, Gomis P. Cerebrovascular inflammation following subarachnoid hemorrhage. Jpn J Pharmacol. 2002;88(3):227–49.

    Article  CAS  PubMed  Google Scholar 

  17. Tunkel AR, Scheld WM. Pathogenesis and pathophysiology of bacterial meningitis. Clin Microbiol Rev. 1993;6(2):118–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rusconi F, Parizzi F, Garlaschi L, et al. Interleukin 6 activity in infants and children with bacterial meningitis. The collaborative study on meningitis. Pediatr Infect Dis J. 1991;10(2):117–21.

    Article  CAS  PubMed  Google Scholar 

  19. Asi-Bautista MC, Heidemann SM, Meert KL, et al. Tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 concentrations in cerebrospinal fluid predict ventriculoperitoneal shunt infection. Crit Care Med. 1997;25(10):1713–6.

    Article  CAS  PubMed  Google Scholar 

  20. Mathiesen T, Andersson B, Loftenius A, et al. Increased interleukin-6 levels in cerebrospinal fluid following subarachnoid hemorrhage. J Neurosurg. 1993;78(4):562–7.

    Article  CAS  PubMed  Google Scholar 

  21. Schoch B, Regel JP, Wichert M. Analysis of intrathecal interleukin-6 as a potential predictive factor for vasospasm in subarachnoid hemorrhage. Neurosurgery. 2007;60(5):828–36 discussion–36.

    Article  PubMed  Google Scholar 

  22. Sarrafzadeh A, Schlenk F, Gericke C, et al. Relevance of cerebral interleukin-6 after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2010;13(3):339–46.

    Article  CAS  PubMed  Google Scholar 

  23. Muroi C, Bellut D, Coluccia D, et al. Systemic interleukin-6 concentrations in patients with perimesencephalic non-aneurysmal subarachnoid hemorrhage. J Clin Neurosci. 2011;18(12):1626–9.

    Article  CAS  PubMed  Google Scholar 

  24. Muroi C, Seule M, Sikorski C, et al. Systemic interleukin-6 levels reflect illness course and prognosis of patients with spontaneous nonaneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl. 2013;115:77–80.

    PubMed  Google Scholar 

  25. Smith CJ, Emsley HC, Gavin CM, et al. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol. 2004;4:2.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Winter CD, Pringle AK, Clough GF, et al. Raised parenchymal interleukin-6 levels correlate with improved outcome after traumatic brain injury. Brain. 2004;127(Pt 2):315–20.

    Article  PubMed  Google Scholar 

  27. Klopfenstein JD, Kim LJ, Feiz-Erfan I, et al. Comparison of rapid and gradual weaning from external ventricular drainage in patients with aneurysmal subarachnoid hemorrhage: a prospective randomized trial. J Neurosurg. 2004;100(2):225–9.

    Article  PubMed  Google Scholar 

  28. Hopkins SJ, McMahon CJ, Singh N, et al. Cerebrospinal fluid and plasma cytokines after subarachnoid haemorrhage: CSF interleukin-6 may be an early marker of infection. J Neuroinflammation. 2012;9:255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gaetani P, Tartara F, Pignatti P, et al. Cisternal CSF levels of cytokines after subarachnoid hemorrhage. Neurol Res. 1998;20(4):337–42.

    CAS  PubMed  Google Scholar 

  30. Osuka K, Suzuki Y, Tanazawa T, et al. Interleukin-6 and development of vasospasm after subarachnoid haemorrhage. Acta Neurochir (Wien). 1998;140(9):943–51.

    Article  CAS  Google Scholar 

  31. Kikuchi T, Okuda Y, Kaito N, et al. Cytokine production in cerebrospinal fluid after subarachnoid haemorrhage. Neurol Res. 1995;17(2):106–8.

    CAS  PubMed  Google Scholar 

  32. Gruber A, Rossler K, Graninger W, et al. Ventricular cerebrospinal fluid and serum concentrations of sTNFR-I, IL-1ra, and IL-6 after aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2000;12(4):297–306.

    Article  CAS  PubMed  Google Scholar 

  33. Müller MHG, Merkelbach S, Holzer G. Schwerdtfeger. Inflammatory response in subarachnoid hemorrhage: a comparison to bacterial meningitis. Clin Neurol Neurosurg. 1997;99(Supplement 1):S194.

    Article  Google Scholar 

  34. Chakrabarty P, Jansen-West K, Beccard A, et al. Massive gliosis induced by interleukin-6 suppresses Abeta deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J. 2010;24(2):548–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoefnagel D, Dammers R, Ter Laak-Poort MP, et al. Risk factors for infections related to external ventricular drainage. Acta Neurochir (Wien). 2008;150(3):209–14 discussion 14.

    Article  CAS  PubMed  Google Scholar 

  36. Camacho EF, Boszczowski I, Basso M, et al. Infection rate and risk factors associated with infections related to external ventricular drain. Infection. 2011;39(1):47–51.

    Article  CAS  PubMed  Google Scholar 

  37. Yoshioka H, Inagawa T, Tokuda Y, et al. Chronic hydrocephalus in elderly patients following subarachnoid hemorrhage. Surg Neurol. 2000;53(2):119–24 discussion 24–5.

    Article  CAS  PubMed  Google Scholar 

  38. Pietila TA, Heimberger KC, Palleske H, et al. Influence of aneurysm location on the development of chronic hydrocephalus following SAH. Acta Neurochir (Wien). 1995;137(1–2):70–3.

    Article  CAS  Google Scholar 

  39. Hasan D, Tanghe HL. Distribution of cisternal blood in patients with acute hydrocephalus after subarachnoid hemorrhage. Ann Neurol. 1992;31(4):374–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Maria Wostrack, Thomas Reeb, Jan Martin, Victoria Kehl, Ehab Shiban, Alexander Preuss, Florian Ringel, Bernhard Meyer, and Yu-Mi Ryang declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Wostrack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wostrack, M., Reeb, T., Martin, J. et al. Shunt-Dependent Hydrocephalus After Aneurysmal Subarachnoid Hemorrhage: The Role of Intrathecal Interleukin-6. Neurocrit Care 21, 78–84 (2014). https://doi.org/10.1007/s12028-014-9991-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-014-9991-x

Keywords

Navigation