Skip to main content

Advertisement

Log in

The role of TGF-beta signaling in dendritic cell tolerance

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Transforming growth factor beta (TGF-β) is a pleiotropic cytokine present in vertebrate and invertebrate organisms that functions in numerous physiological and pathological processes. TGF-β impacts all the cells of the immune system, and of the three known TGF-β isoforms, TGF-β1 is the predominant isoform expressed in immune cells. TGF-β1 is known to play a pivotal role in the function of all immune cells especially in the regulation of T cell development and in the induction of immunological tolerance in dendritic cells (DCs). Based on the importance of DCs in regulation of the innate and adaptive arms of the immune system, in this review we explore the regulatory functions of TGF-β required for establishment and maintenance of DC-mediated immune tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Massague J. The transforming growth factor-beta family. Annu Rev Cell Biol. 1990;6(1):597–641. doi:10.1146/annurev.cb.06.110190.003121.

    Article  CAS  PubMed  Google Scholar 

  2. Clark DA, Coker R. Molecules in focus transforming growth factor-beta (TGF-β). Int J Biochem Cell Biol. 1998;30(3):293–8. doi:10.1016/S1357-2725(97)00128-3.

    Article  CAS  PubMed  Google Scholar 

  3. Li MO, Wan YY, Sanjabi S, Robertson A-KL, Flavell RA. Transforming growth factor-β regulation of immune responses. Annu Rev Immunol. 2006;24(1):99–146. doi:10.1146/annurev.immunol.24.021605.090737.

    Article  CAS  PubMed  Google Scholar 

  4. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor β in human disease. N Engl J Med. 2000;342(18):1350–8. doi:10.1056/NEJM200005043421807.

    Article  CAS  PubMed  Google Scholar 

  5. Herpin A, Lelong C, Favrel P. Transforming growth factor-β-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Developmental & Comparative Immunology. 2004;28(5):461–85. doi:10.1016/j.dci.2003.09.007.

    Article  CAS  Google Scholar 

  6. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-β. Annu Rev Immunol. 1998;16(1):137–61. doi:10.1146/annurev.immunol.16.1.137.

    Article  CAS  PubMed  Google Scholar 

  7. Guerder S, Joncker N, Mahiddine K, Serre L. Dendritic cells in tolerance and autoimmune diabetes. Curr Opin Immunol. 2013;25(6):670–5. doi:10.1016/j.coi.2013.10.004.

    Article  CAS  PubMed  Google Scholar 

  8. Li MO, Sanjabi S, Flavell RA. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity. 2006;25(3):455–71. doi:10.1016/j.immuni.2006.07.011.

    Article  CAS  PubMed  Google Scholar 

  9. Mu D, Cambier S, Fjellbirkeland L, Baron JL, Munger JS, Kawakatsu H, et al. The integrin αvβ8 mediates epithelial homeostasis through MT1-MMP–dependent activation of TGF-β1. J Cell Biol. 2002;157(3):493–507. doi:10.1083/jcb.200109100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Melton AC, Bailey-Bucktrout SL, Travis MA, Fife BT, Bluestone JA, Sheppard D. Expression of alphavbeta8 integrin on dendritic cells regulates Th17 cell development and experimental autoimmune encephalomyelitis in mice. J Clin Invest. 2010;120(12):4436–44. doi:10.1172/JCI43786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prud’homme GJ, Piccirillo CA. The inhibitory effects of transforming growth factor-beta-1 (TGF-β1) in autoimmune diseases. J Autoimmun. 2000;14(1):23–42. doi:10.1006/jaut.1999.0339.

    Article  PubMed  Google Scholar 

  12. Aoki CA, Borchers AT, Li M, Flavell RA, Bowlus CL, Ansari AA, et al. Transforming growth factor β (TGF-β) and autoimmunity. Autoimmun Rev. 2005;4(7):450–9. doi:10.1016/j.autrev.2005.03.006.

    Article  CAS  PubMed  Google Scholar 

  13. Kriegel M, Li M, Sanjabi S, Wan Y, Flavell R. Transforming growth factor-β: recent advances on its role in immune tolerance. Curr Rheumatol Rep. 2006;8(2):138–44. doi:10.1007/s11926-006-0054-y.

    Article  CAS  PubMed  Google Scholar 

  14. Worthington JJ, Fenton TM, Czajkowska BI, Klementowicz JE, Travis MA. Regulation of TGFβ in the immune system: an emerging role for integrins and dendritic cells. Immunobiology. 2012;217(12):1259–65. doi:10.1016/j.imbio.2012.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Travis MA, Sheppard D. TGF-β activation and function in immunity. Annu Rev Immunol. 2014;32:51–82. doi:10.1146/annurev-immunol-032713-120257.

    Article  CAS  PubMed  Google Scholar 

  16. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFβ activation. J Cell Sci. 2003;116(2):217.

    Article  CAS  PubMed  Google Scholar 

  17. Li MO, Flavell RA. Contextual regulation of inflammation: a duet by transforming growth factor-β and interleukin-10. Immunity. 2008;28(4):468–76. doi:10.1016/j.immuni.2008.03.003.

    Article  PubMed  Google Scholar 

  18. Annes J, Munger J, Rifkin D. Making sense of latent TGFbeta activation. J Cell Sci. 2003;116(Pt 2):217–24.

    Article  CAS  PubMed  Google Scholar 

  19. Wipff P-J, Hinz B. Integrins and the activation of latent transforming growth factor β1—an intimate relationship. Eur J Cell Biol. 2008;87(8–9):601–15. doi:10.1016/j.ejcb.2008.01.012.

    Article  CAS  PubMed  Google Scholar 

  20. Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616–30. doi:10.1038/nrm3434.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Massagué J, Gomis RR. The logic of TGFβ signaling. FEBS Lett. 2006;580(12):2811–20. doi:10.1016/j.febslet.2006.04.033.

    Article  PubMed  Google Scholar 

  22. Huminiecki L, Goldovsky L, Freilich S, Moustakas A, Ouzounis C, Heldin C-H. Emergence, development and diversification of the TGF-β signalling pathway within the animal kingdom. BMC Evol Biol. 2009;9:28. doi:10.1186/1471-2148-9-28.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moustakas A, Heldin CH. The regulation of TGFbeta signal transduction. Development. 2009;136(22):3699–714. doi:10.1242/dev.030338.

    Article  CAS  PubMed  Google Scholar 

  24. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-[beta] family signalling. Nature. 2003;425(6958):577–84.

    Article  CAS  PubMed  Google Scholar 

  25. Schridde A, Bain CC, Mayer JU, Montgomery J, Pollet E, Denecke B, et al. Tissue-specific differentiation of colonic macrophages requires TGF[beta] receptor-mediated signaling. Mucosal Immunol. 2017; doi:10.1038/mi.2016.142.

  26. Chen W, Jin W, Hardegen N, Lei K-J, Li L, Marinos N, et al. Conversion of peripheral CD4(+)CD25(−) naive T cells to CD4(+)CD25(+) regulatory T cells by TGF-β induction of transcription factor Foxp3. J Exp Med. 2003;198(12):1875–86. doi:10.1084/jem.20030152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakamura K, Kitani A, Fuss I, Pedersen A, Harada N, Nawata H, et al. TGF-β1 plays an important role in the mechanism of CD4<sup>+</sup>CD25<sup>+</sup> regulatory T cell activity in both humans and mice. J Immunol. 2004;172(2):834.

    Article  CAS  PubMed  Google Scholar 

  28. Worthington John J, Kelly A, Smedley C, Bauché D, Campbell S, Marie Julien C, et al. Integrin αvβ8-mediated TGF-β activation by effector regulatory T cells is essential for suppression of T-cell-mediated inflammation. Immunity. 2015;42(5):903–15. doi:10.1016/j.immuni.2015.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Massagué J. TGFβ in cancer. Cell. 2008;134(2):215–30. doi:10.1016/j.cell.2008.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E, et al. Tumor cells convert immature myeloid dendritic cells into TGF-β–secreting cells inducing CD4(+)CD25(+) regulatory T cell proliferation. J Exp Med. 2005;202(7):919–29. doi:10.1084/jem.20050463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park BV, Freeman ZT, Ghasemzadeh A, Chattergoon MA, Rutebemberwa A, Steigner J, et al. TGF-β1-mediated Smad3 enhances PD-1 expression on antigen-specific T cells in cancer. Cancer discovery. 2016;6(12):1366–81. doi:10.1158/2159-8290.CD-15-1347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ding G, Niu J, Liu Y. Dental pulp stem cells suppress the proliferation of lymphocytes via transforming growth factor-β1. Hum Cell. 2015;28(2):81–90. doi:10.1007/s13577-014-0106-y.

    Article  CAS  PubMed  Google Scholar 

  33. Kwack KH, Lee JM, Park SH, Lee HW. Human dental pulp stem cells suppress alloantigen-induced immunity by stimulating T cells to release transforming growth factor beta. J Endod. 2017;43(1):100–8. doi:10.1016/j.joen.2016.09.005.

    Article  PubMed  Google Scholar 

  34. Coombes JL, Siddiqui KRR, Arancibia-Cárcamo CV, Hall J, Sun C-M, Belkaid Y, et al. A functionally specialized population of mucosal CD103(+) DCs induces Foxp3(+) regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism. J Exp Med. 2007;204(8):1757–64. doi:10.1084/jem.20070590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. H-b M, Lin M-f, Cen H, Yu J, X-j M. TGF-β1 treated murine dendritic cells are maturation resistant and down-regulate Toll-like receptor 4 expression. Journal of Zhejiang University Science. 2004;5(10):1239–44. doi:10.1631/jzus.2004.1239.

    Article  Google Scholar 

  36. Mou HB, Lin MF, Huang H, Cai Z. Transforming growth factor-β1 modulates lipopolysaccharide-induced cytokine/chemokine production and inhibits nuclear factor-κB, extracellular signal-regulated kinases and p38 activation in dendritic cells in mice. Transplant Proc. 2011;43(5):2049–52. doi:10.1016/j.transproceed.2011.02.054.

    Article  CAS  PubMed  Google Scholar 

  37. Nishimura SL, Sheppard D, Pytela R. Integrin alpha v beta 8. Interaction with vitronectin and functional divergence of the beta 8 cytoplasmic domain. J Biol Chem. 1994;269(46):28708–15.

    CAS  PubMed  Google Scholar 

  38. Evans R, Patzak I, Svensson L, De Filippo K, Jones K, McDowall A, et al. Integrins in immunity. J Cell Sci. 2009;122(2):215–25. doi:10.1242/jcs.019117.

    Article  CAS  PubMed  Google Scholar 

  39. Song K-H, Cho S-J, Song J-Y. αvβ1 integrin as a novel therapeutic target for tissue fibrosis. Annals of Translational Medicine. 2016;4(20):411. doi:10.21037/atm.2016.10.33.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Travis MA, Reizis B, Melton AC, Masteller E, Tang Q, Proctor JM, et al. Loss of integrin α(v)β(8) on dendritic cells causes autoimmunity and colitis in mice. Nature. 2007;449(7160):361–5. doi:10.1038/nature06110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aluwihare P, Mu Z, Zhao Z, Yu D, Weinreb P, Horan G, et al. Mice that lack activity of alphavbeta6- and alphavbeta8-integrins reproduce the abnormalities of Tgfb1- and Tgfb3-null mice. J Cell Sci. 2009;122:227–32.

    Article  CAS  PubMed  Google Scholar 

  42. Païdassi H, Acharya M, Zhang A, Mukhopadhyay S, Kwon M, Chow C, et al. Preferential expression of integrin αvβ8 promotes generation of regulatory T cells by mouse CD103+ dendritic cells. Gastroenterology. 2011;141(5):1813–20. doi:10.1053/j.gastro.2011.06.076.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Worthington JJ, Czajkowska BI, Melton AC, Travis MA. Intestinal dendritic cells specialize to activate transforming growth factor-β and induce Foxp3(+) regulatory T cells via integrin αvβ8. Gastroenterology. 2011;141(5):1802–12. doi:10.1053/j.gastro.2011.06.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fenton TM, Kelly A, Shuttleworth EE, Smedley C, Atakilit A, Powrie F, et al. Inflammatory cues enhance TGFβ activation by distinct subsets of human intestinal dendritic cells via integrin αvβ8. Mucosal Immunol. 2017;10(3):624–34. doi:10.1038/mi.2016.94.

    Article  CAS  PubMed  Google Scholar 

  45. van Duivenvoorde LM, van Mierlo GJD, Boonman ZFHM, Toes REM. Dendritic cells: vehicles for tolerance induction and prevention of autoimmune diseases. Immunobiology. 2006;211(6–8):627–32. doi:10.1016/j.imbio.2006.05.014.

    Article  PubMed  Google Scholar 

  46. Benson RA, Brewer JM, Platt AM. Mechanisms of autoimmunity in human diseases: a critical review of current dogma. Curr Opin Rheumatol. 2014;26(2):197–203. doi:10.1097/bor.0000000000000037.

    Article  CAS  PubMed  Google Scholar 

  47. Ohnmacht C, Pullner A, King SBS, Drexler I, Meier S, Brocker T, et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med. 2009;206(3):549–59. doi:10.1084/jem.20082394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schinnerling K, Soto L, García-González P, Catalán D, Aguillón JC. Skewing dendritic cell differentiation towards a tolerogenic state for recovery of tolerance in rheumatoid arthritis. Autoimmun Rev. 2015;14(6):517–27. doi:10.1016/j.autrev.2015.01.014.

    Article  CAS  PubMed  Google Scholar 

  49. Van Brussel I, Lee WP, Rombouts M, Nuyts AH, Heylen M, De Winter BY, et al. Tolerogenic dendritic cell vaccines to treat autoimmune diseases: can the unattainable dream turn into reality? Autoimmun Rev. 2014;13(2):138–50. doi:10.1016/j.autrev.2013.09.008.

    Article  PubMed  Google Scholar 

  50. Randolph GJ, Ochando J, Partida-Sanchez S. Migration of dendritic cell subsets and their precursors. Annu Rev Immunol. 2008;26:293–316. doi:10.1146/annurev.immunol.26.021607.090254.

    Article  CAS  PubMed  Google Scholar 

  51. Kaliński P, Hilkens CMU, Wierenga EA, Kapsenberg ML. T-cell priming by type-1and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today. 1999;20(12):561–7. doi:10.1016/S0167-5699(99)01547-9.

    Article  PubMed  Google Scholar 

  52. García-González P, Ubilla-Olguín G, Catalán D, Schinnerling K, Aguillón JC. Tolerogenic dendritic cells for reprogramming of lymphocyte responses in autoimmune diseases. Autoimmun Rev. 2016;15(11):1071–80. doi:10.1016/j.autrev.2016.07.032.

    Article  PubMed  Google Scholar 

  53. Ten Brinke A, Hilkens CMU, Cools N, Geissler EK, Hutchinson JA, Lombardi G, et al. Clinical use of tolerogenic dendritic cells—harmonization approach in European collaborative effort. Mediat Inflamm. 2015;2015:471719. doi:10.1155/2015/471719.

    Google Scholar 

  54. Hilkens CMU, Isaacs JD, Thomson AW. Development of dendritic cell-based immunotherapy for autoimmunity. Int Rev Immunol. 2010;29(2):156–83. doi:10.3109/08830180903281193.

    Article  CAS  PubMed  Google Scholar 

  55. Broggi A, Zanoni I, Granucci F. Migratory conventional dendritic cells in the induction of peripheral T cell tolerance. J Leukoc Biol. 2013;94(5):903–11. doi:10.1189/jlb.0413222.

    Article  CAS  PubMed  Google Scholar 

  56. Gordon JR, Ma Y, Churchman L, Gordon SA, Dawicki W. Regulatory dendritic cells for immunotherapy in immunologic diseases. Front Immunol. 2014;5:7. doi:10.3389/fimmu.2014.00007.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mukhopadhaya A, Hanafusa T, Jarchum I, Chen Y-G, Iwai Y, Serreze DV, et al. Selective delivery of β cell antigen to dendritic cells in vivo leads to deletion and tolerance of autoreactive CD8(+) T cells in NOD mice. Proc Natl Acad Sci U S A. 2008;105(17):6374–9. doi:10.1073/pnas.0802644105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H. Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol Cell Biol. 2002;80(5):477–83.

    Article  PubMed  Google Scholar 

  59. Jauregui-Amezaga A, Cabezón R, Ramírez-Morros A, España C, Rimola J, Bru C, et al. Intraperitoneal administration of autologous tolerogenic dendritic cells for refractory Crohn’s disease: a phase I study. Journal of Crohn's and Colitis. 2015;9(12):1071.

    Article  Google Scholar 

  60. Giannoukakis N, Phillips B, Finegold D, Harnaha J, Trucco M. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care. 2011;34(9):2026–32. doi:10.2337/dc11-0472.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Benham H, Nel HJ, Law SC, Mehdi AM, Street S, Ramnoruth N, et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype–positive rheumatoid arthritis patients. Sci Transl Med. 2015;7(290):290ra87.

    Article  PubMed  Google Scholar 

  62. Ronger-Savle S, Valladeau J, Claudy A, Schmitt D, Peguet-Navarro J, Dezutter-Dambuyant C, et al. TGFβ inhibits CD1d expression on dendritic cells. J Investig Dermatol. 2005;124(1):116–8. doi:10.1111/j.0022-202X.2004.23315.x.

    Article  CAS  PubMed  Google Scholar 

  63. Gerlini G, Hefti HP, Kleinhans M, Nickoloff BJ, Burg G, Nestle FO. CD1d is expressed on dermal dendritic cells and monocyte-derived dendritic cells. J Investig Dermatol. 2001;117(3):576–82. doi:10.1046/j.0022-202x.2001.01458.x.

    Article  CAS  PubMed  Google Scholar 

  64. Rosat J-P, Grant EP, Beckman EM, Dascher CC, Sieling PA, Frederique D, et al. CD1-restricted microbial lipid antigen-specific recognition found in the CD8<sup>+</sup> αβ T cell pool. J Immunol. 1999;162(1):366.

    CAS  PubMed  Google Scholar 

  65. Abediankenari S, Ghasemi M, Kim Y-J. Human leukocyte antigen-G expression on dendritic cells induced by transforming growth factor-β1 and CD4(+) T cells proliferation. Iran Biomed J. 2011;15(1–2):1–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Olavio RB, Marina S, Loredana M, Roberta R. HLA-G and inflammatory diseases. Inflammation & Allergy - Drug Targets (Discontinued). 2008;7(2):67–74. doi:10.2174/187152808785107615.

    Article  Google Scholar 

  67. Adnan E, Matsumoto T, Ishizaki J, Onishi S, Suemori K, Yasukawa M, et al. Human tolerogenic dendritic cells generated with protein kinase C inhibitor are optimal for functional regulatory T cell induction—a comparative study. Clin Immunol. 2016;173:96–108. doi:10.1016/j.clim.2016.09.007.

    Article  CAS  PubMed  Google Scholar 

  68. Denniston AK, Kottoor SH, Khan I, Oswal K, Williams GP, Abbott J, et al. Endogenous cortisol and TGF-β in human aqueous humor contribute to ocular immune privilege by regulating dendritic cell function. J Immunol. 2010;186(1):305.

    Article  PubMed  Google Scholar 

  69. Issazadeh S, Mustafa M, Ljungdahl Å, Höjeberg B, Dagerlind Å, Elde R, et al. Interferon γ, interleukin 4 and transforming growth factor β in experimental autoimmune encephalomyelitis in lewis rats: dynamics of cellular mrna expression in the central nervous system and lymphoid cells. J Neurosci Res. 1995;40(5):579–90. doi:10.1002/jnr.490400503.

    Article  CAS  PubMed  Google Scholar 

  70. Laouar Y, Town T, Jeng D, Tran E, Wan Y, Kuchroo VK, et al. TGF-β signaling in dendritic cells is a prerequisite for the control of autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2008;105(31):10865–70. doi:10.1073/pnas.0805058105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Speck S, Lim J, Shelake S, Matka M, Stoddard J, Farr A, et al. TGF-β signaling initiated in dendritic cells instructs suppressive effects on Th17 differentiation at the site of neuroinflammation. PLoS One. 2014;9(7):e102390. doi:10.1371/journal.pone.0102390.

    Article  PubMed  PubMed Central  Google Scholar 

  72. DiPaolo RJ, Brinster C, Davidson TS, Andersson J, Glass D, Shevach EM. Autoantigen-specific TGFβ-induced Foxp3<sup>+</sup> regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells. J Immunol. 2007;179(7):4685.

    Article  CAS  PubMed  Google Scholar 

  73. Darrasse-Jèze G, Deroubaix S, Mouquet H, Victora GD, Eisenreich T, Yao K-H, et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J Exp Med. 2009;206(9):1853–62. doi:10.1084/jem.20090746.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ramalingam R, Larmonier CB, Thurston RD, Midura-Kiela MT, Zheng SG, Ghishan FK, et al. Dendritic cell-specific disruption of TGFβ receptor II leads to altered regulatory T-cell phenotype and spontaneous multi-organ autoimmunity. Journal of immunology (Baltimore, Md : 1950). 2012;189(8):3878–93. doi:10.4049/jimmunol.1201029.

    Article  CAS  Google Scholar 

  75. Boomershine CS, Chamberlain A, Kendall P, Afshar-Sharif AR, Huang H, Washington MK, et al. Autoimmune pancreatitis results from loss of TGFβ signalling in S100A4-positive dendritic cells. Gut. 2009;58(9):1267–74. doi:10.1136/gut.2008.170779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Boucard-Jourdin M, Kugler D, Endale Ahanda M-L, This S, De Calisto J, Zhang A, et al. β8 integrin expression and activation of TGF-β by intestinal dendritic cells is determined by both tissue microenvironment and cell lineage. Journal of immunology (Baltimore, Md : 1950). 2016;197(5):1968–78. doi:10.4049/jimmunol.1600244.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Dr. Ubaldo Soto for his kind help with the artwork material used in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. R. Langridge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esebanmen, G.E., Langridge, W.H.R. The role of TGF-beta signaling in dendritic cell tolerance. Immunol Res 65, 987–994 (2017). https://doi.org/10.1007/s12026-017-8944-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-017-8944-9

Keywords

Navigation