Skip to main content
Log in

Organ distribution of histones after intravenous infusion of FITC histones or after sepsis

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Histones appear in plasma during infectious or non-infectious sepsis and are associated with multiorgan injury. In the current studies, intravenous infusion of histones resulted in their localization in major organs. In vitro exposure of mouse macrophages to histones caused a buildup of histones on cell membranes followed by localization into cytosol and into the nucleus. After polymicrobial sepsis (cecal ligation and puncture), histones appeared in plasma as well as in a multiorgan pattern, peaking at 8 h followed by decline. In lungs, histones and neutrophils appeared together, with evidence for formation of neutrophil extracellular traps (NETs), which represent an innate immune response to trap and kill bacteria and other infectious agents. In liver, there was intense NET formation, featuring linear patterns containing histones and strands of DNA. When neutrophils were activated in vitro with C5a or phorbol myristate acetate, NET formation ensued. While formation of NETs represents entrapment and killing of infectious agents, the simultaneous release from neutrophils of histones often results in tissue/organ damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ward PA. An endogenous factor mediates shock-induced injury. Nat Med. 2013;19(11):1368–9. doi:10.1038/nm.3387.

    Article  CAS  PubMed  Google Scholar 

  2. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev. 2012;249(1):158–75. doi:10.1111/j.1600-065X.2012.01146.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Richmond TJ, Davey CA. The structure of DNA in the nucleosome core. Nature. 2003;423(6936):145–50. doi:10.1038/nature01595.

    Article  CAS  PubMed  Google Scholar 

  4. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389(6648):251–60. doi:10.1038/38444.

    Article  CAS  PubMed  Google Scholar 

  5. Abrams ST, Zhang N, Manson J, Liu T, Dart C, Baluwa F, et al. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med. 2013;187(2):160–9. doi:10.1164/rccm.201206-1037OC.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Allam R, Scherbaum CR, Darisipudi MN, Mulay SR, Hagele H, Lichtnekert J, et al. Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J Am Soc Nephrol. 2012;23(8):1375–88. doi:10.1681/ASN.2011111077.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15(11):1318–21. doi:10.1038/nm.2053.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Gillrie MR, Lee K, Gowda DC, Davis SP, Monestier M, Cui L, et al. Plasmodium falciparum histones induce endothelial proinflammatory response and barrier dysfunction. Am J Pathol. 2012;180(3):1028–39. doi:10.1016/j.ajpath.2011.11.037.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Allam R, Kumar SV, Darisipudi MN, Anders HJ. Extracellular histones in tissue injury and inflammation. J Mol Med. 2014;92(5):465–72. doi:10.1007/s00109-014-1148-z.

    Article  CAS  PubMed  Google Scholar 

  10. Chen R, Kang R, Fan XG, Tang D. Release and activity of histone in diseases. Cell Death Dis. 2014;5:e1370. doi:10.1038/cddis.2014.337.

    Article  CAS  PubMed  Google Scholar 

  11. Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–61. doi:10.1182/blood-2011-03-343061.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Caudrillier A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB, Monestier M, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Investig. 2012;122(7):2661–71. doi:10.1172/JCI61303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Nakahara M, Ito T, Kawahara K, Yamamoto M, Nagasato T, Shrestha B, et al. Recombinant thrombomodulin protects mice against histone-induced lethal thromboembolism. PLoS One. 2013;8(9):e75961. doi:10.1371/journal.pone.0075961.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One. 2012;7(2):e32366. doi:10.1371/journal.pone.0032366.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ekaney ML, Otto GP, Sossdorf M, Sponholz C, Boehringer M, Loesche W, et al. Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation. Crit Care. 2014;18(5):543. doi:10.1186/s13054-014-0543-8.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hashiba M, Huq A, Tomino A, Hirakawa A, Hattori T, Miyabe H, et al. Neutrophil extracellular traps in patients with sepsis. J Surg Res. 2014;. doi:10.1016/j.jss.2014.09.033.

    PubMed  Google Scholar 

  17. Luo L, Zhang S, Wang Y, Rahman M, Syk I, Zhang E, et al. Proinflammatory role of neutrophil extracellular traps in abdominal sepsis. Am J Physiol Lung Cell Mol Physiol. 2014;307(7):L586–96. doi:10.1152/ajplung.00365.2013.

    Article  CAS  PubMed  Google Scholar 

  18. Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol. 2011;187(5):2626–31. doi:10.4049/jimmunol.1003930.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Huang H, Evankovich J, Yan W, Nace G, Zhang L, Ross M, et al. Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll-like receptor 9 in mice. Hepatology. 2011;54(3):999–1008. doi:10.1002/hep.24501.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Bosmann M, Grailer JJ, Ruemmler R, Russkamp NF, Zetoune FS, Sarma JV, et al. Extracellular histones are essential effectors of C5aR- and C5L2-mediated tissue damage and inflammation in acute lung injury. FASEB J. 2013;27(12):5010–21. doi:10.1096/fj.13-236380.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Grailer JJ, Canning BA, Kalbitz M, Haggadone MD, Dhond RM, Andjelkovic AV, et al. Critical role for the NLRP3 inflammasome during acute lung injury. J Immunol. 2014;192(12):5974–83. doi:10.4049/jimmunol.1400368.

    Article  CAS  PubMed  Google Scholar 

  22. Huang H, Chen HW, Evankovich J, Yan W, Rosborough BR, Nace GW, et al. Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury. J Immunol. 2013;191(5):2665–79. doi:10.4049/jimmunol.1202733.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Bosmann M, Grailer JJ, Zhu K, Matthay MA, Sarma JV, Zetoune FS, et al. Anti-inflammatory effects of beta2 adrenergic receptor agonists in experimental acute lung injury. FASEB J. 2012;26(5):2137–44. doi:10.1096/fj.11-201640.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Darwiche SS, Ruan X, Hoffman MK, Zettel KR, Tracy AP, Schroeder LM, et al. Selective roles for toll-like receptors 2, 4, and 9 in systemic inflammation and immune dysfunction following peripheral tissue injury. J Trauma Acute Care Surg. 2013;74(6):1454–61. doi:10.1097/TA.0b013e3182905ed2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Allam R, Darisipudi MN, Tschopp J, Anders HJ. Histones trigger sterile inflammation by activating the NLRP3 inflammasome. Eur J Immunol. 2013;43(12):3336–42. doi:10.1002/eji.201243224.

    Article  CAS  PubMed  Google Scholar 

  26. McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12(3):324–33. doi:10.1016/j.chom.2012.06.011.

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka K, Koike Y, Shimura T, Okigami M, Ide S, Toiyama Y, et al. In vivo characterization of neutrophil extracellular traps in various organs of a murine sepsis model. PLoS One. 2014;9(11):e111888. doi:10.1371/journal.pone.0111888.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Grailer JJ, Kalbitz M, Zetoune FS, Ward PA. Persistent neutrophil dysfunction and suppression of acute lung injury in mice following cecal ligation and puncture sepsis. J Innate Immun. 2014;6(5):695–705. doi:10.1159/000362554.

    Article  CAS  PubMed  Google Scholar 

  29. Monestier M, Fasy TM, Losman MJ, Novick KE, Muller S. Structure and binding properties of monoclonal antibodies to core histones from autoimmune mice. Mol Immunol. 1993;30(12):1069–75.

    Article  CAS  PubMed  Google Scholar 

  30. Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009;4(1):31–6. doi:10.1038/nprot.2008.214.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18(9):1386–93. doi:10.1038/nm.2847.

    Article  CAS  PubMed  Google Scholar 

  32. Bosmann M, Ward PA. Role of C3, C5 and anaphylatoxin receptors in acute lung injury and in sepsis. Adv Exp Med Biol. 2012;946:147–59. doi:10.1007/978-1-4614-0106-3_9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ham A, Rabadi M, Kim M, Brown KM, Ma Z, D’Agati V, et al. Peptidyl arginine deiminase-4 activation exacerbates kidney ischemia-reperfusion injury. Am J Physiol Ren Physiol. 2014;307(9):F1052–62. doi:10.1152/ajprenal.00243.2014.

    Article  CAS  Google Scholar 

  34. Martinod K, Demers M, Fuchs TA, Wong SL, Brill A, Gallant M, et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci US. 2013;110(21):8674–9. doi:10.1073/pnas.1301059110.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health, GM-29507 and GM-61656 (PAW). The authors are responsible for the scientific content of this publication. The authors declare no commercial or financial conflicts of interests. We also acknowledge the expert assistance of Sue Scott and Melissa Rennells with the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Ward.

Additional information

Fatemeh Fattahi and Jamison J. Grailer have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattahi, F., Grailer, J.J., Jajou, L. et al. Organ distribution of histones after intravenous infusion of FITC histones or after sepsis. Immunol Res 61, 177–186 (2015). https://doi.org/10.1007/s12026-015-8628-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8628-2

Keywords

Navigation