Skip to main content
Log in

Role of gonadal hormones in programming developmental changes in thymopoietic efficiency and sexual diergism in thymopoiesis

  • Immunology in Serbia
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

There is a growing body of evidence indicating the important role of the neonatal steroid milieu in programming sexually diergic changes in thymopoietic efficiency, which in rodents occur around puberty and lead to a substantial phenotypic and functional remodeling of the peripheral T-cell compartment. This in turn leads to an alteration in the susceptibility to infection and various immunologically mediated pathologies. Our laboratory has explored interdependence in the programming and development of the hypothalamo-pituitary-gonadal axis and thymus using experimental model of neonatal androgenization. We have outlined critical points in the complex process of T-cell development depending on neonatal androgen imprinting and the peripheral outcome of these changes and have pointed to underlying mechanisms. Our research has particularly contributed to an understanding of the putative role of changes in catecholamine-mediated communications in the thymopoietic alterations in adult neonatally androgenized rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pierpaoli W, Sorkin E. Hormones, thymus and lymphocyte functions. Experientia. 1972;28:1385–9.

    Article  PubMed  CAS  Google Scholar 

  2. Isakovic K, Jankovic BD. Neuro-endocrine correlates of immune response. II. Changes in the lymphatic organs of brain-lesioned rats. Int Arch Allergy Appl Immunol. 1973;45:373–84.

    Article  PubMed  CAS  Google Scholar 

  3. Jankovic BD, Isakovic K, Knezevic Z. Ontogeny of this immuno-neuro-endocrine relationship. Changes in lymphoid tissue of chick embryos surgically decapitated at 33–38 hours of incubation. Dev Comp Immunol. 1978;2:479–91.

    Article  PubMed  CAS  Google Scholar 

  4. Jankovic BD. Neuroimmune interactions: experimental and clinical strategies. Immunol Lett. 1987;16:341–53.

    Article  PubMed  CAS  Google Scholar 

  5. Besedovsky HO, del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev. 1996;17:64–102.

    PubMed  CAS  Google Scholar 

  6. Besedovsky HO, Rey AD. Physiology of psychoneuroimmunology: a personal view. Brain Behav Immun. 2007;21:34–44.

    Article  PubMed  CAS  Google Scholar 

  7. Tada T. The immune system as a supersystem. Annu Rev Immunol. 1997;15:1–13.

    Article  PubMed  CAS  Google Scholar 

  8. Blalock JE. The syntax of immune-neuroendocrine communication. Immunol Today. 1994;15:504–11.

    Article  PubMed  CAS  Google Scholar 

  9. Blalock JE, Harbour-McMenamin D, Smith EM. Peptide hormones shared by the neuroendocrine and immunologic systems. J Immunol. 1985;135:858s–61s.

    PubMed  CAS  Google Scholar 

  10. Savino W, Dardenne M. Neuroendocrine control of thymus physiology. Endocr Rev. 2000;21:412–43.

    Article  PubMed  CAS  Google Scholar 

  11. Dardenne M, Savino W, Bach JF. Modulation of thymic endocrine function by thyroid and steroid hormones. Int J Neurosci. 1988;39:325–34.

    Article  PubMed  CAS  Google Scholar 

  12. Fabris N, Mocchegiani E, Provinciali M. Plasticity of neuroendocrine-thymus interactions during aging. Exp Gerontol. 1997;32:415–29.

    Article  PubMed  CAS  Google Scholar 

  13. Hadden JW. Thymic endocrinology. Ann N Y Acad Sci. 1998;840:352–8.

    Article  PubMed  CAS  Google Scholar 

  14. Leposavic G, Pilipovic I, Radojevic K, Pesic V, Perisic M, Kosec D. Catecholamines as immunomodulators: a role for adrenoceptor-mediated mechanisms in fine tuning of T-cell development. Auton Neurosci. 2008;144:1–12.

    Article  PubMed  CAS  Google Scholar 

  15. Gomez-Sanchez CE. Glucocorticoid production and regulation in thymus: of mice and birds. Endocrinology. 2009;150:3977–9.

    Article  PubMed  CAS  Google Scholar 

  16. Wiegers GJ, Tischner D. A role for glucocorticoids in thymic involution? Curr Immunol Rev. 2011;7:133–4.

    Article  CAS  Google Scholar 

  17. Pierpaoli W, Besedovsky HO. Role of the thymus in programming of neuroendocrine functions. Clin Exp Immunol. 1975;20:323–38.

    PubMed  CAS  Google Scholar 

  18. Morale MC, Batticane N, Bartoloni G, Guarcello V, Farinella Z, Galasso MG, Marchetti B. Blockade of central and peripheral luteinizing hormone-releasing hormone (LHRH) receptors in neonatal rats with a potent LHRH-antagonist inhibits the morphofunctional development of the thymus and maturation of the cell-mediated and humoral immune responses. Endocrinology. 1991;128:1073–85.

    Article  PubMed  CAS  Google Scholar 

  19. Jost A. The extent of foetal endocrine autonomy. In: Wolstenholme GEW, O’Connor M, editors. Ciba foundation symposium—foetal autonomy. London: Churchill, Ltd; 1969. p. 79–94.

  20. Gorski RA. Sexual differentiation of the hypothalamus. In: Mack H, Sherman AI, editors. The neuroendocrinology of human reproduction. Springfield: CC Thomas Publ; 1971. p. 60–90.

    Google Scholar 

  21. Arai Y, Matsumoto A, Nishizuka M. Synaptogenesis and neuronal plasticity to gonadal steroids: implication for the development of sexual dimorphism in the neuroendocrin brain. In: Ganten D, Pfaff D, editors. Current topics in neuroendocrinology, vol. 7. Berlin: Springer; 1986. p. 291–307.

    Google Scholar 

  22. Staples JE, Gasiewicz TA, Fiore NC, Lubahn DB, Korach KS, Silverstone AE. Estrogen receptor alpha is necessary in thymic development and estradiol-induced thymic alterations. J Immunol. 1999;163:4168–74.

    PubMed  CAS  Google Scholar 

  23. Yellayi S, Teuscher C, Woods JA, Welsh TH Jr, Tung KS, Nakai M, Rosenfeld CS, Lubahn DB, Cooke PS. Normal development of thymus in male and female mice requires estrogen/estrogen receptor-alpha signaling pathway. Endocrine. 2000;12:207–13.

    Article  PubMed  CAS  Google Scholar 

  24. Erlandsson MC, Ohlsson C, Gustafsson JA, Carlsten H. Role of oestrogen receptors alpha and beta in immune organ development and in oestrogen-mediated effects on thymus. Immunology. 2001;103:17–25.

    Article  PubMed  CAS  Google Scholar 

  25. Ruitenberg EJ, Berkvens JM. The morphology of the endocrine system in congenitally athymic (nude) mice. J Pathol. 1977;121:225–31.

    Article  PubMed  CAS  Google Scholar 

  26. Besedovsky HO, Sorkin E. Thymus involvement in female sexual maturation. Nature. 1974;249:356–8.

    Article  PubMed  CAS  Google Scholar 

  27. Daneva T, Spinedi E, Hadid R, Gaillard RC. Impaired hypothalamo-pituitary-adrenal axis function in Swiss nude athymic mice. Neuroendocrinology. 1995;62:79–86.

    Article  PubMed  CAS  Google Scholar 

  28. Rebar RW, Miyake A, Low TL, Goldstein AL. Thymosin stimulates secretion of luteinizing hormone-releasing factor. Science. 1981;214:669–71.

    Article  PubMed  CAS  Google Scholar 

  29. Prepin J. Fetal thymus and thymuline stimulate the in vitro proliferation of oogonia in the fetal rat ovary. C R Acad Sci III. 1991;313:407–11.

    PubMed  CAS  Google Scholar 

  30. Zaidi SA, Kendall MD, Gillham B, Jones MT. The release of luteinizing hormone from pituitaries perifused with thymic extracts. Thymus. 1988;12:253–64.

    PubMed  CAS  Google Scholar 

  31. Uzumcu M, Akira S, Lin YC. Stimulatory effect of thymic factor(s) on steroidogenesis in cultured rat granulosa cells. Life Sci. 1992;51:1217–28.

    Article  PubMed  CAS  Google Scholar 

  32. Reggiani PC, Poch B, Console GM, Rimoldi OJ, Schwerdt JI, Tungler V, Garcia-Bravo MM, Dardenne M, Goya RG. Thymulin-based gene therapy and pituitary function in animal models of aging. NeuroImmunoModulation. 2011;18:350–6.

    Article  PubMed  CAS  Google Scholar 

  33. Leposavic G, Perisic M. Age-associated remodeling of thymopoiesis: role for gonadal hormones and catecholamines. NeuroImmunoModulation. 2008;15:290–322.

    Article  PubMed  CAS  Google Scholar 

  34. Louria DB, Sen P, Sherer CB, Farrer WE. Infections in older patients: a systematic clinical approach. Geriatrics. 1993;48:28–34.

    PubMed  CAS  Google Scholar 

  35. Ershler WB, Longo DL. Aging and cancer: issues of basic and clinical science. J Natl Cancer Inst. 1997;89:1489–97.

    Article  PubMed  CAS  Google Scholar 

  36. Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med. 2008;205:711–23.

    Article  PubMed  CAS  Google Scholar 

  37. Haynes L, Swain SL. Why aging T cells fail: implications for vaccination. Immunity. 2006;24:663–6.

    Article  PubMed  CAS  Google Scholar 

  38. Hasler P, Zouali M. Immune receptor signaling, aging, and autoimmunity. Cell Immunol. 2005;233:102–8.

    Article  PubMed  CAS  Google Scholar 

  39. Prelog M. Aging of the immune system: a risk factor for autoimmunity? Autoimmun Rev. 2006;5:136–9.

    Article  PubMed  CAS  Google Scholar 

  40. Legato MJ, Bilezikian JP, editors. Principles of gender-specific medicine. Amsterdam: Elsevier Academic Press; 2004.

    Google Scholar 

  41. Dorner G, Eckert R, Hinz G. Androgen-dependent sexual dimorphism of the immune system. Endokrinologie. 1980;76:112–4.

    PubMed  CAS  Google Scholar 

  42. Grossman CJ. Regulation of the immune system by sex steroids. Endocr Rev. 1984;5:435–55.

    Article  PubMed  CAS  Google Scholar 

  43. Olsen NJ, Kovacs WJ. Gonadal steroids and immunity. Endocr Rev. 1996;17:369–84.

    PubMed  CAS  Google Scholar 

  44. Shames RS. Gender differences in the development and function of the immune system. J Adolesc Health. 2002;30:59–70.

    Article  PubMed  Google Scholar 

  45. Boyle P, Ferlay J. Cancer incidence and mortality in Europe, 2004. Ann Oncol. 2005;16:481–8.

    Article  PubMed  CAS  Google Scholar 

  46. Whitacre CC. Sex differences in autoimmune disease. Nat Immunol. 2001;2:777–80.

    Article  PubMed  CAS  Google Scholar 

  47. Gaillard RC, Spinedi E. Sex- and stress-steroids interactions and the immune system: evidence for a neuroendocrine-immunological sexual dimorphism. Domest Anim Endocrinol. 1998;15:345–52.

    Article  PubMed  CAS  Google Scholar 

  48. Lamason R, Zhao P, Rawat R, Davis A, Hall JC, Chae JJ, Agarwal R, Cohen P, Rosen A, Hoffman EP, Nagaraju K. Sexual dimorphism in immune response genes as a function of puberty. BMC Immunol. 2006;7:2.

    Article  PubMed  CAS  Google Scholar 

  49. Rhodes ME, Rubin RT. Functional sex differences (‘sexual diergism’) of central nervous system cholinergic systems, vasopressin, and hypothalamic-pituitary-adrenal axis activity in mammals: a selective review. Brain Res Brain Res Rev. 1999;30:135–52.

    Article  PubMed  CAS  Google Scholar 

  50. Martin JT. Sexual dimorphism in immune function: the role of prenatal exposure to androgens and estrogens. Eur J Pharmacol. 2000;405:251–61.

    Article  PubMed  CAS  Google Scholar 

  51. Leposavic G, Karapetrovic B, Micic M, Kosec D. Prepubertal castration alters the phenotypic profile of adult rat thymocytes. NeuroImmunoModulation. 1995;2:100–7.

    Article  PubMed  CAS  Google Scholar 

  52. Leposavic G, Pejcic-Karapetrovic B, Kosec D. Neonatal androgenization affects the intrathymic T-cell maturation in rats. NeuroImmunoModulation. 2005;12:117–30.

    Article  PubMed  CAS  Google Scholar 

  53. Pierpaoli W, Kopp HG, Muller J, Keller M. Interdependence between neuroendocrine programming and the generation of immune recognition in ontogeny. Cell Immunol. 1977;29:16–27.

    Article  PubMed  CAS  Google Scholar 

  54. Leposavic G, Karapetrovic B, Obradovic S, Vidic Dandovic B, Kosec D. Differential effects of gonadectomy on the thymocyte phenotypic profile in male and female rats. Pharmacol Biochem Behav. 1996;54:269–76.

    Article  PubMed  CAS  Google Scholar 

  55. Radojevic K, Arsenovic-Ranin N, Kosec D, Pesic V, Pilipovic I, Perisic M, Plecas-Solarovic B, Leposavic G. Neonatal castration affects intrathymic kinetics of T-cell differentiation and the spleen T-cell level. J Endocrinol. 2007;192:669–82.

    Article  PubMed  CAS  Google Scholar 

  56. Leposavic G, Perisic M, Kosec D, Arsenovic-Ranin N, Radojevic K, Stojic-Vukanic Z, Pilipovic I. Neonatal testosterone imprinting affects thymus development and leads to phenotypic rejuvenation and masculinization of the peripheral blood T-cell compartment in adult female rats. Brain Behav Immun. 2009;23:294–304.

    Article  PubMed  CAS  Google Scholar 

  57. Barraclough CA, Gorski RA. Evidence that the hypothalamus is responsible for androgen-induced sterility in the female rat. Endocrinology. 1961;68:68–79.

    Article  PubMed  CAS  Google Scholar 

  58. Arnold AP, Gorski RA. Gonadal steroid induction of structural sex differences in the central nervous system. Annu Rev Neurosci. 1984;7:413–42.

    Article  PubMed  CAS  Google Scholar 

  59. Gorski RA, Gordon JH, Shryne JE, Southam AM. Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res. 1978;148:333–46.

    Article  PubMed  CAS  Google Scholar 

  60. Becu-Villalobos D, Gonzalez Iglesias A, Diaz-Torga G, Hockl P, Libertun C. Brain sexual differentiation and gonadotropins secretion in the rat. Cell Mol Neurobiol. 1997;17:699–715.

    Article  PubMed  CAS  Google Scholar 

  61. Kudwa AE, Michopoulos V, Gatewood JD, Rissman EF. Roles of estrogen receptors alpha and beta in differentiation of mouse sexual behavior. Neuroscience. 2006;138:921–8.

    Article  PubMed  CAS  Google Scholar 

  62. Barraclough CA. Production of anovulatory, sterile rats by single injections of testosterone propionate. Endocrinology. 1961;68:62–7.

    Article  PubMed  CAS  Google Scholar 

  63. Gerall AA, Kenney AM. Neonatally androgenized females’ responsiveness to estrogen and progesterone. Endocrinology. 1970;87:560–6.

    Article  PubMed  CAS  Google Scholar 

  64. Sakabe K, Kawashima I, Urano R, Seiki K, Itoh T. Effects of sex steroids on the proliferation of thymic epithelial cells in a culture model: a role of protein kinase C. Immunol Cell Biol. 1994;72:193–9.

    Article  PubMed  CAS  Google Scholar 

  65. Radojevic K, Kosec D, Perisic M, Pilipovic I, Vidic-Dankovic B, Leposavic G. Neonatal androgenization affects the efficiency of beta-adrenoceptor-mediated modulation of thymopoiesis. J Neuroimmunol. 2011;239:68–79.

    Article  PubMed  CAS  Google Scholar 

  66. Mertens B, Verhoeven G. Influence of neonatal androgenization on the expression of alpha 2u-globulin in rat liver and submaxillary gland. J Steroid Biochem. 1985;23:557–65.

    Article  PubMed  CAS  Google Scholar 

  67. Uotinen N, Puustinen R, Pasanen S, Manninen T, Kivineva M, Syvala H, Tuohimaa P, Ylikomi T. Distribution of progesterone receptor in female mouse tissues. Gen Comp Endocrinol. 1999;115:429–41.

    Article  PubMed  CAS  Google Scholar 

  68. Raveche ES, Vigersky RA, Rice MK, Steinberg AD. Murine thymic androgen receptors. J Immunopharmacol. 1980;2:425–34.

    Article  PubMed  CAS  Google Scholar 

  69. Borlak J, Schulte I, Thum T. Androgen metabolism in thymus of fetal and adult rats. Drug Metab Dispos. 2004;32:675–9.

    Article  PubMed  CAS  Google Scholar 

  70. Vanderstichele H, Eechaute W, Lacroix E, Leusen I. The effects of neonatal androgenization of male rats on testosterone metabolism by the hypothalamus-pituitary-gonadal axis. J Steroid Biochem. 1987;26:493–7.

    Article  PubMed  CAS  Google Scholar 

  71. Petrie HT, Zuniga-Pflucker JC. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu Rev Immunol. 2007;25:649–79.

    Article  PubMed  CAS  Google Scholar 

  72. Boehm T. Thymus development and function. Curr Opin Immunol. 2008;20:178–84.

    Article  PubMed  CAS  Google Scholar 

  73. Martin A, Alonso LM, Gomez del Moral M, Zapata AG. Ultrastructural changes in the adult rat thymus after estradiol benzoate treatment. Tissue Cell. 1994;26:169–79.

    Article  PubMed  CAS  Google Scholar 

  74. Sakabe K, Okuma M, Karaki S, Matsuura S, Yoshida T, Aikawa H, Izumi S, Kayama F. Inhibitory effect of natural and environmental estrogens on thymic hormone production in thymus epithelial cell culture. Int J Immunopharmacol. 1999;21:861–8.

    Article  PubMed  CAS  Google Scholar 

  75. Jin C, Fu WX, Xie LP, Qian XP, Chen WF. SDF-1alpha production is negatively regulated by mouse estrogen enhanced transcript in a mouse thymus epithelial cell line. Cell Immunol. 2003;223:26–34.

    Article  PubMed  CAS  Google Scholar 

  76. Selvaraj V, Bunick D, Finnigan-Bunick C, Johnson RW, Wang H, Liu L, Cooke PS. Gene expression profiling of 17beta-estradiol and genistein effects on mouse thymus. Toxicol Sci. 2005;87:97–112.

    Article  PubMed  CAS  Google Scholar 

  77. Gould KA, Shull JD, Gorski J. DES action in the thymus: inhibition of cell proliferation and genetic variation. Mol Cell Endocrinol. 2000;170:31–9.

    Article  PubMed  CAS  Google Scholar 

  78. Yao G, Hou Y. Nonylphenol induces thymocyte apoptosis through Fas/FasL pathway by mimicking estrogen in vivo. Environ Toxicol Pharmacol. 2004;17:19–27.

    Article  PubMed  CAS  Google Scholar 

  79. Csaba G, Dobozy O, Inczefi-Gonda A, Szeberenyi S. Effect of the absence of neonatal testosterone imprinting on the activity of the microsomal enzyme system and on the dexamethasone binding of the thymus in adulthood. Acta Physiol Hung. 1988;71:421–7.

    PubMed  CAS  Google Scholar 

  80. Csaba G, Inczefi-Gonda A. Effect of a single treatment (imprinting) with genistein or combined treatment with genistein + benzpyrene on the binding capacity of glucocorticoid and estrogen receptors of adult rats. Hum Exp Toxicol. 2002;21:231–4.

    Article  PubMed  CAS  Google Scholar 

  81. de Fougerolles Nunn E, Greenstein B, Khamashta M, Hughes GR. Evidence for sexual dimorphism of estrogen receptors in hypothalamus and thymus of neonatal and immature Wistar rats. Int J Immunopharmacol. 1999;21:869–77.

    Article  PubMed  Google Scholar 

  82. Zamoyska R, Lovatt M. Signalling in T-lymphocyte development: integration of signalling pathways is the key. Curr Opin Immunol. 2004;16:191–6.

    Article  PubMed  CAS  Google Scholar 

  83. von Boehmer H. Selection of the T-cell repertoire: receptor-controlled checkpoints in T-cell development. Adv Immunol. 2004;84:201–38.

    Article  Google Scholar 

  84. Miosge L, Zamoyska R. Signalling in T-cell development: is it all location, location, location? Curr Opin Immunol. 2007;19:194–9.

    Article  PubMed  CAS  Google Scholar 

  85. Law DA, Spruyt LL, Paterson DJ, Williams AF. Subsets of thymopoietic rat thymocytes defined by expression of the CD2 antigen and the MRC OX-22 determinant of the leukocyte-common antigen CD45. Eur J Immunol. 1989;19:2289–95.

    Article  PubMed  CAS  Google Scholar 

  86. Porritt HE, Gordon K, Petrie HT. Kinetics of steady-state differentiation and mapping of intrathymic-signaling environments by stem cell transplantation in nonirradiated mice. J Exp Med. 2003;198:957–62.

    Article  PubMed  CAS  Google Scholar 

  87. Goldschneider I. Cyclical mobilization and gated importation of thymocyte progenitors in the adult mouse: evidence for a thymus-bone marrow feedback loop. Immunol Rev. 2006;209:58–75.

    Article  PubMed  Google Scholar 

  88. Shortman K, Egerton M, Spangrude GJ, Scollay R. The generation and fate of thymocytes. Semin Immunol. 1990;2:3–12.

    PubMed  CAS  Google Scholar 

  89. Shortman K, Vremec D, Egerton M. The kinetics of T cell antigen receptor expression by subgroups of CD4+8+ thymocytes: delineation of CD4+8+3(2+) thymocytes as post-selection intermediates leading to mature T cells. J Exp Med. 1991;173:323–32.

    Article  PubMed  CAS  Google Scholar 

  90. Hueber AO, Bernard AM, Battari CL, Marguet D, Massol P, Foa C, Brun N, Garcia S, Stewart C, Pierres M, He HT. Thymocytes in Thy-1-/- mice show augmented TCR signaling and impaired differentiation. Curr Biol. 1997;7:705–8.

    Article  PubMed  CAS  Google Scholar 

  91. Perisic M, Arsenovic-Ranin N, Pilipovic I, Kosec D, Pesic V, Radojevic K, Leposavic G. Role of ovarian hormones in age-associated thymic involution revisited. Immunobiology. 2010;215:275–93.

    Article  PubMed  CAS  Google Scholar 

  92. Wira CR, Fahey JV, Abrahams VM, Rossoll RM. Influence of stage of the reproductive cycle and estradiol on thymus cell antigen presentation. J Steroid Biochem Mol Biol. 2003;84:79–87.

    Article  PubMed  CAS  Google Scholar 

  93. Ito Y, Arai S, van Oers NS, Aifantis I, von Boehmer H, Miyazaki T. Positive selection by the pre-TCR yields mature CD8+ T cells. J Immunol. 2002;169:4913–9.

    PubMed  Google Scholar 

  94. Berzins SP, McNab FW, Jones CM, Smyth MJ, Godfrey DI. Long-term retention of mature NK1.1+NKT cells in the thymus. J Immunol. 2006;176:4059–65.

    PubMed  CAS  Google Scholar 

  95. Takai Y, Wong GG, Clark SC, Burakoff SJ, Herrmann SH. B cell stimulatory factor-2 is involved in the differentiation of cytotoxic T lymphocytes. J Immunol. 1988;140:508–12.

    PubMed  CAS  Google Scholar 

  96. Budd RC, Mixter PF. The origin of CD4-CD8-TCR alpha beta+ thymocytes: a model based on T-cell receptor avidity. Immunol Today. 1995;16:428–31.

    Article  PubMed  CAS  Google Scholar 

  97. Klein L, Kyewski B. Self-antigen presentation by thymic stromal cells: a subtle division of labor. Curr Opin Immunol. 2000;12:179–86.

    Article  PubMed  CAS  Google Scholar 

  98. Yamagiwa S, Gray JD, Hashimoto S, Horwitz DA. A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol. 2001;166:7282–9.

    PubMed  CAS  Google Scholar 

  99. Keisler LW, vom Saal FS, Keisler DH, Rudeen PK, Walker SE. Aberrant hormone balance in fetal autoimmune NZB/W mice following prenatal exposure to testosterone excess or the androgen blocker flutamide. Biol Reprod. 1995;53:1190–7.

    Article  PubMed  CAS  Google Scholar 

  100. Winter JS, Faiman C, Hobson WC, Prasad AV, Reyes FI. Pituitary-gonadal relations in infancy. I. Patterns of serum gonadotropin concentrations from birth to four years of age in man and chimpanzee. J Clin Endocrinol Metab. 1975;40:545–51.

    Article  PubMed  CAS  Google Scholar 

  101. Forest MG, De Peretti E, Bertrand J. Hypothalamic-pituitary-gonadal relationships in man from birth to puberty. Clin Endocrinol (Oxf). 1976;5:551–69.

    Article  CAS  Google Scholar 

  102. Mann DR, Fraser HM. The neonatal period: a critical interval in male primate development. J Endocrinol. 1996;149:191–7.

    Article  PubMed  CAS  Google Scholar 

  103. Mann DR, Ansari AA, Akinbami MA, Wallen K, Gould KG, McClure HM. Neonatal treatment with luteinizing hormone-releasing hormone analogs alters peripheral lymphocyte subsets and cellular and humorally mediated immune responses in juvenile and adult male monkeys. J Clin Endocrinol Metab. 1994;78:292–8.

    Article  PubMed  CAS  Google Scholar 

  104. Mann DR, Lunn SF, Akinbami MA, Samuel K, Waterfall M, Fraser HM. Effect of neonatal treatment with a GnRH antagonist on development of the cell-mediated immune response in marmosets. Am J Reprod Immunol. 1999;42:175–86.

    Article  PubMed  CAS  Google Scholar 

  105. Ho PC, Tang GW, Lawton JW. Lymphocyte subsets in patients with oestrogen deficiency. J Reprod Immunol. 1991;20:85–91.

    Article  PubMed  CAS  Google Scholar 

  106. Leposavic G, Pekic S, Kosec D. Gonadotropin-releasing hormone agonist administration affects the thymopoiesis in adult female rats independently on gonadal hormone production. Am J Reprod Immunol. 2005;53:30–41.

    Article  PubMed  CAS  Google Scholar 

  107. Chen Y, Qiao S, Tuckermann J, Okret S, Jondal M. Thymus-derived glucocorticoids mediate androgen effects on thymocyte homeostasis. FASEB J. 2010;24:5043–51.

    Article  PubMed  CAS  Google Scholar 

  108. Wiegers GJ, Kaufmann M, Tischner D, Villunger A. Shaping the T-cell repertoire: a matter of life and death. Immunol Cell Biol. 2011;89:33–9.

    Article  PubMed  Google Scholar 

  109. Rouabhia M, Chakir J, Othmane O, Deschaux PA. Interaction between immune and endocrine systems: effect of luteotrophic hormone (LH) and thymic hormone on surface antigens (Thy1-2, Lyt1 and Lyt2) expression. Thymus. 1989;14:205–12.

    PubMed  CAS  Google Scholar 

  110. Spinedi E, Chisari A, Pralong F, Gaillard RC. Sexual dimorphism in the mouse hypothalamic-pituitary-adrenal axis function after endotoxin and insulin stresses during development. NeuroImmunoModulation. 1997;4:77–83.

    PubMed  CAS  Google Scholar 

  111. Leposavic G, Radojevic K, Vidic-Dankovic B, Kosec D, Pilipovic I, Perisic M. Early postnatal castration affects thymic and thymocyte noradrenaline levels and beta-adrenoceptor-mediated influence on the thymopoiesis in adult rats. J Neuroimmunol. 2007;182:100–15.

    Article  PubMed  CAS  Google Scholar 

  112. Trotter RN, Stornetta RL, Guyenet PG, Roberts MR. Transneuronal mapping of the CNS network controlling sympathetic outflow to the rat thymus. Auton Neurosci. 2007;131:9–20.

    Article  PubMed  Google Scholar 

  113. Simerly RB. Hormonal control of the development and regulation of tyrosine hydroxylase expression within a sexually dimorphic population of dopaminergic cells in the hypothalamus. Brain Res Mol Brain Res. 1989;6:297–310.

    Article  PubMed  CAS  Google Scholar 

  114. Plut C, Ribiere C, Giudicelli Y, Dausse JP. Gender differences in hypothalamic tyrosine hydroxylase and alpha(2)-adrenoceptor subtype gene expression in cafeteria diet-induced hypertension and consequences of neonatal androgenization. J Pharmacol Exp Ther. 2002;302:525–31.

    Article  PubMed  CAS  Google Scholar 

  115. Pilipovic I, Vidic-Dankovic B, Perisic M, Radojevic K, Colic M, Todorovic V, Leposavic G. Sexual dimorphism in the catecholamine-containing thymus microenvironment: a role for gonadal hormones. J Neuroimmunol. 2008;195:7–20.

    Article  PubMed  CAS  Google Scholar 

  116. Ohta Y. Sterility in neonatally androgenized female rats and the decidual cell reaction. Int Rev Cytol. 1995;160:1–52.

    Article  PubMed  CAS  Google Scholar 

  117. Herbison AE, Simonian SX, Thanky NR, Bicknell RJ. Oestrogen modulation of noradrenaline neurotransmission. Novartis Found Symp 2000;230:74–85; discussion 85–93.

    Google Scholar 

  118. Serova L, Rivkin M, Nakashima A, Sabban EL. Estradiol stimulates gene expression of norepinephrine biosynthetic enzymes in rat locus coeruleus. Neuroendocrinology. 2002;75:193–200.

    Article  PubMed  CAS  Google Scholar 

  119. Anglin JC, Brooks VL. Tyrosine hydroxylase and norepinephrine transporter in sympathetic ganglia of female rats vary with reproductive state. Auton Neurosci. 2003;105:8–15.

    Article  PubMed  CAS  Google Scholar 

  120. Jeong H, Kim MS, Kwon J, Kim KS, Seol W. Regulation of the transcriptional activity of the tyrosine hydroxylase gene by androgen receptor. Neurosci Lett. 2006;396:57–61.

    Article  PubMed  CAS  Google Scholar 

  121. Benten WP, Becker A, Schmitt-Wrede HP, Wunderlich F. Developmental regulation of intracellular and surface androgen receptors in T cells. Steroids. 2002;67:925–31.

    Article  PubMed  CAS  Google Scholar 

  122. Marchetti B, Morale MC, Pelletier G. Sympathetic nervous system control of thymus gland maturation: autoradiographic characterization and localization of beta 2-adrenergic receptors in the rat thymus gland and presence of sexual dimorphism during ontogenic development. Prog Neuroendocrinimmuol. 1990;3:103–15.

    Google Scholar 

  123. de Coupade C, Gear RW, Dazin PF, Sroussi HY, Green PG, Levine JD. Beta 2-adrenergic receptor regulation of human neutrophil function is sexually dimorphic. Br J Pharmacol. 2004;143:1033–41.

    Article  PubMed  CAS  Google Scholar 

  124. Du XJ, Fang L, Kiriazis H. Sex dimorphism in cardiac pathophysiology: experimental findings, hormonal mechanisms, and molecular mechanisms. Pharmacol Ther. 2006;111:434–75.

    Article  PubMed  CAS  Google Scholar 

  125. Marchetti B, Morale MC, Paradis P, Bouvier M. Characterization, expression, and hormonal control of a thymic beta 2-adrenergic receptor. Am J Physiol. 1994;267:E718–31.

    PubMed  CAS  Google Scholar 

  126. Leposavic G, Arsenovic-Ranin N, Radojevic K, Kosec D, Pesic V, Vidic-Dankovic B, Plecas-Solarovic B, Pilipovic I. Characterization of thymocyte phenotypic alterations induced by long-lasting beta-adrenoceptor blockade in vivo and its effects on thymocyte proliferation and apoptosis. Mol Cell Biochem. 2006;285:87–99.

    Article  PubMed  CAS  Google Scholar 

  127. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52:595–638.

    PubMed  CAS  Google Scholar 

  128. Arner P. Effects of testosterone on fat cell lipolysis. Species differences and possible role in polycystic ovarian syndrome. Biochimie. 2005;87:39–43.

    Article  PubMed  CAS  Google Scholar 

  129. Merkle D, Hoffmann R. Roles of cAMP and cAMP-dependent protein kinase in the progression of prostate cancer: cross-talk with the androgen receptor. Cell Signal. 2011;23:507–15.

    Article  PubMed  CAS  Google Scholar 

  130. Wajeman-Chao SA, Lancaster SA, Graf LH Jr, Chambers DA. Mechanism of catecholamine-mediated destabilization of messenger RNA encoding Thy-1 protein in T-lineage cells. J Immunol. 1998;161:4825–33.

    PubMed  CAS  Google Scholar 

  131. Kikuchi-Utsumi K, Kikuchi-Utsumi M, Cannon B, Nedergaard J. Differential regulation of the expression of alpha1-adrenergic receptor subtype genes in brown adipose tissue. Biochem J. 1997;322(Pt 2):417–24.

    PubMed  CAS  Google Scholar 

  132. Leposavic G, Pesic V, Stojic-Vukanic Z, Radojevic K, Arsenovic-Ranin N, Kosec D, Perisic M, Pilipovic I. Age-associated plasticity of alpha1-adrenoceptor-mediated tuning of T-cell development. Exp Gerontol. 2010;45:918–35.

    Article  PubMed  CAS  Google Scholar 

  133. Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993;101:378–84.

    Article  PubMed  CAS  Google Scholar 

  134. Chalubinski M, Kowalski ML. Endocrine disrupters–potential modulators of the immune system and allergic response. Allergy. 2006;61:1326–35.

    Article  PubMed  CAS  Google Scholar 

  135. Saenz de Rodriguez CA, Bongiovanni AM, Conde de Borrego L. An epidemic of precocious development in Puerto Rican children. J Pediatr. 1985;107:393–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants 145049 and 175050 from Ministry of Education and Science of Republic of Serbia. The authors thank Dusko Kosec, PhD, Katarina Radojevic, PhD, Nevena Arsenovic-Ranin and Zorica Stojic-Vukanic for many exciting findings and discussions that have helped to shape this review. The authors also thank Ms Helen Gilmour for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Leposavic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leposavic, G., Perisic, M. & Pilipovic, I. Role of gonadal hormones in programming developmental changes in thymopoietic efficiency and sexual diergism in thymopoiesis. Immunol Res 52, 7–19 (2012). https://doi.org/10.1007/s12026-012-8278-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8278-6

Keywords

Navigation