Skip to main content
Log in

Exposures of Sus scrofa to a TASER® conducted electrical weapon: no effects on 2-dimensional gel electrophoresis patterns of plasma proteins

  • Original Article
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

In an earlier study, we found significant changes in red-blood-cell, leukocyte, and platelet counts, and in red-blood-cell membrane proteins, following exposures of anesthetized pigs to a conducted electrical weapon. In the current study, we examined potential changes in plasma proteins [analyzed via two-dimensional gel electrophoresis (2-DGE)] following two 30 s exposures of anesthetized pigs (Sus scrofa) to a TASER® C2 conducted electrical weapon. Patterns of proteins, separated by 2-DGE, were consistent and reproducible between animals and between times of sampling. We determined that the blood plasma collection, handling, storage, and processing techniques we used are suitable for swine blood. There were no statistically significant changes in plasma proteins following the conducted-electrical-weapon exposures. Overall gel patterns of fibrinogen were similar to results of other studies of both pigs and humans (in control settings, not exposed to conducted electrical weapons). The lack of significant changes in plasma proteins may be added to the body of evidence regarding relative safety of TASER C2 device exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jauchem JR, Seaman RL, Klages CM. Physiological effects of the TASER® C2 electronic control device. Forensic Sci Med Pathol. 2009;5:189–98.

    Article  CAS  PubMed  Google Scholar 

  2. Jauchem JR, Bernhard JA, Cerna CZ, Lim TY, Seaman RL, Tarango M. Effects of a TASER® conducted energy weapon on the circulating red-blood-cell population and other factors in Sus scrofa. Forensic Sci Med Pathol. 2013;9:308–20.

    Article  PubMed  Google Scholar 

  3. Lundvall J, Lindgren P. F-cell shift and protein loss strongly affect validity of PV reductions indicated by Hb/Hct and plasma proteins. J Appl Physiol. 1998;84:822–9.

    CAS  PubMed  Google Scholar 

  4. Schagatay E, Andersson JP, Hallén M, Pålsson B. Selected contribution: role of spleen emptying in prolonging apneas in humans. J Appl Physiol. 2001;90:1623–9.

    CAS  PubMed  Google Scholar 

  5. Černý M, Skalák J, Cerna H, Brzobohatý B. Advances in purification and separation of posttranslationally modified proteins. J Proteom. 2013;92:2–27.

    Article  Google Scholar 

  6. Ahmadizad S, El-Sayed MS. The acute effects of resistance exercise on the main determinants of blood rheology. J Sports Sci. 2005;23:243–9.

    Article  PubMed  Google Scholar 

  7. Guidi F, Magherini F, Gamberi T, Bini L, Puglia M, Marzocchini R, et al. Plasma protein carbonylation and physical exercise. Mol BioSyst. 2011;7:640–50.

    Article  CAS  PubMed  Google Scholar 

  8. Collen D, Semeraro N, Tricot JP, Vermylen J. Turnover of fibrinogen, plasminogen, and prothrombin during exercise in man. J Appl Physiol. 1977;42:865–73.

    CAS  PubMed  Google Scholar 

  9. Scoppetta F, Tartaglia M, Renzone G, Avellini L, Gaiti A, Scaloni A, Chiaradia E. Plasma protein changes in horse after prolonged physical exercise: a proteomic study. J Proteom. 2012;75:4494–504.

    Article  CAS  Google Scholar 

  10. Pasella S, Baralla A, Canu E, Pinna S, Vaupel J, Deiana M, et al. Pre-analytical stability of the plasma proteomes based on the storage temperature. Proteom Sci. 2013;11(1):10.

    Article  CAS  Google Scholar 

  11. Lundblad RL. Considerations for the use of blood plasma and serum for proteomic analysis. Internet J Genomics Proteom. 2003;1(2).

  12. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2009. http://www.R-project.org. Accessed 3 Dec 2013.

  13. Smyth GK. Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors. Bioinformatics and computational biology solutions using R and bioconductor. New York: Springer; 2005. p. 397–420.

    Chapter  Google Scholar 

  14. Wong J. Imputation. R package version 1.3 [Computer software]. 2011. http://CRAN.R-project.org/package=imputation. Accessed 3 Dec 2013.

  15. Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3: Article 3.

  16. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, et al. Missing value estimation methods for DNA microarrays. Bioinformatics. 2001;17:520–5.

    Article  CAS  PubMed  Google Scholar 

  17. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.

    Google Scholar 

  18. Dàvila E, Parés D, Cuvelier G, Relkin P. Heat-induced gelation of porcine blood plasma proteins as affected by pH. Meat Sci. 2007;76:216–25.

    Article  PubMed  Google Scholar 

  19. Miller I, Gianazza E, Gemeiner M. Any use in proteomics for low-tech approaches? Detecting fibrinogen chains of different animal species in two-dimensional electrophoresis patterns. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878:2314–8.

    Article  CAS  PubMed  Google Scholar 

  20. Sanchez JC, Appel RD, Golaz O, Pasquali C, Ravier F, Bairoch A, Hochstrasser DF. Inside SWISS-2DPAGE database. Electrophoresis. 1995;16(7):1131–51.

    Article  CAS  PubMed  Google Scholar 

  21. Polaskova V, Kapur A, Khan A, Molloy MP, Baker MS. High-abundance protein depletion: comparison of methods for human plasma biomarker discovery. Electrophoresis. 2010;31:471–82.

    Article  CAS  PubMed  Google Scholar 

  22. Mahn A, Reyes A, Zamorano M, Cifuentes W, Ismail M. Depletion of highly abundant proteins in blood plasma by hydrophobic interaction chromatography for proteomic analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878:1038–44.

    Article  CAS  PubMed  Google Scholar 

  23. Polack B, Valiron O, Concord E, Freyssinet JM, Hudry-Clergeon G. Molecular characterization of an abnormal fibrinogen by two-dimensional electrophoresis. Clin Chem. 1984;30:2093–7.

    CAS  PubMed  Google Scholar 

  24. Gattoni M, Boffi A. The effect of isoflurane on erythrocyte membranes studied by ATR-FTIR. Biochim Biophys Acta. 2003;1613:72–8.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Q, Li SZ, Feng CS, Qu XD, Wang H, Zhang XN, et al. Serum proteomics of early postoperative cognitive dysfunction in elderly patients. Chin Med J (Engl). 2012;125:2455–61.

    CAS  Google Scholar 

  26. Tsuboko Y, Sakamoto A. Propofol anaesthesia alters the cerebral proteome differently from sevoflurane anaesthesia. Biomed Res. 2011;32:55–65.

    Article  CAS  PubMed  Google Scholar 

  27. Seehof K, Kresse M, Mäder K, Müller RH. Interactions of nanoparticles with body proteins—improvement of 2D-PAGE-analysis by internal standard. Int J Pharm. 2000;196:231–4.

    Article  CAS  PubMed  Google Scholar 

  28. Vercauteren FG, Arckens L, Quirion R. Applications and current challenges of proteomic approaches, focusing on two-dimensional electrophoresis. Amino Acids. 2007;33:405–14.

    Article  CAS  PubMed  Google Scholar 

  29. Gauci VJ, Wright EP, Coorssen JR. Quantitative proteomics: assessing the spectrum of in-gel protein detection methods. J Chem Biol. 2011;4:3–29.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Dawes DM, Ho JD, Reardon RF, Miner JR. The cardiovascular, respiratory, and metabolic effects of a long duration electronic control device exposure in human volunteers. Forensic Sci Med Pathol. 2010;6:268–74.

    Article  PubMed  Google Scholar 

  31. Ho JD, Dawes DM, Cole JB, Miner JR. Human physiologic effects of a civilian conducted electrical weapon application. Emerg Med Australas. 2009;21(Suppl 1):A28.

    Google Scholar 

  32. Balfoussia E, Skenderi K, Tsironi M, Anagnostopoulos AK, Parthimos N, Vougas K, et al. A proteomic study of plasma protein changes under extreme physical stress. J Proteom. 2014;98:1–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by funds from the Air Force Research Laboratory, 711th Human Performance Wing. Authors’ contributions are as follows. JRJ: Designed and directed the overall research plan, and wrote the major portions of the paper. CZC and TYL: Prepared plasma samples and performed 2-D-PAGE. RLS: Supervised research and performed statistical analyses of the data.

Conflict of interest

The authors have not had any relationship with any manufacturers of conducted energy weapons, including employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Jauchem.

Additional information

The views, opinions, and/or findings contained in this report are those of the authors and do not necessarily state or reflect those of the US Government, and should not be construed as an official Department of Defense position, policy, or decision. This article is a US Government work and is in the public domain in the USA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jauchem, J.R., Cerna, C.Z., Lim, T.Y. et al. Exposures of Sus scrofa to a TASER® conducted electrical weapon: no effects on 2-dimensional gel electrophoresis patterns of plasma proteins. Forensic Sci Med Pathol 10, 526–534 (2014). https://doi.org/10.1007/s12024-014-9606-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-014-9606-z

Keywords

Navigation