Skip to main content

Advertisement

Log in

Alternative Lengthening of Telomeres (ALT) and Telomerase Reverse Transcriptase Promoter Methylation in Recurrent Adult and Primary Pediatric Pituitary Neuroendocrine Tumors

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Neoplastic cells acquire the ability to proliferate endlessly by maintaining telomeres via telomerase, or alternative lengthening of telomeres (ALT). The role of telomere maintenance in pituitary neuroendocrine tumors (PitNETs) has yet to be thoroughly investigated. We analyzed surgical samples of 24 adult recurrent PitNETs (including onset and relapses for 14 of them) and 12 pediatric primary PitNETs. The presence of ALT was assessed using telomere-specific fluorescence in situ hybridization, methylation of telomerase reverse transcriptase promoter (TERTp) by methylation-specific PCR, and ATRX expression by immunohistochemistry. Among the adult recurrent PitNETs, we identified 3/24 (12.5%) ALT-positive cases. ALT was present from the onset and maintained in subsequent relapses, suggesting that this mechanism occurs early in tumorigenesis and is stable during progression. ATRX loss was only seen in one ALT-positive case. Noteworthy, ALT was observed in 3 out of 5 aggressive PitNETs, including two aggressive corticotroph tumors, eventually leading to patient’s death. ALT-negative tumors (87.5%) were classified according to their low (29.2%), medium (50%), and high (8.3%) telomere fluorescence intensity, with no significant differences emerging in their molecular, clinical, or pathological characteristics. TERTp methylation was found in 6/24 cases (25%), with a total concordance in methylation status between onset and recurrences, suggesting that this mechanism remains stable throughout disease progression. TERTp methylation did not influence telomere length. In the pediatric cohort of PitNETs, TERTp methylation was also observed in 4/12 cases (33.3%), but no case of ALT activation was observed. In conclusion, ALT is triggered at onset and maintained during tumor progression in a subset of adult PitNETs, suggesting that it could be used for clinical purposes, as a potential predictor of aggressive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data available on request due to privacy/ethical restrictions.

References

  1. Asa SL, Casar-Borota O, Chanson P, Delgrange E, Earls P, Ezzat S, et al. From pituitary adenoma to pituitary neuroendocrine tumor (PitNET): an International Pituitary Pathology Club proposal. Endocr Relat Cancer 2017;24:C5-C8.

    Article  CAS  PubMed  Google Scholar 

  2. Trouillas J, Jaffrain-Rea ML, Vasiljevic A, Raverot G, Roncaroli F, Villa C. How to Classify the Pituitary Neuroendocrine Tumors (PitNET)s in 2020. Cancers (Basel). 2020 Feb 22;12(2):514. https://doi.org/10.3390/cancers12020514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Davis FG, Kupelian V, Freels S, McCarthy B, Surawicz T. Prevalence estimates for primary brain tumors in the United States by behavior and major histology groups. Neuro Oncol. 2001;3(3):152-8. https://doi.org/10.1093/neuonc/3.3.152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA, Beckers A. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J Clin Endocrinol Metab. 2006 Dec;91(12):4769-75. https://doi.org/10.1210/jc.2006-1668.

    Article  CAS  PubMed  Google Scholar 

  5. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz- Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. 2018 Oct 1;20(suppl_4):iv1-iv86. https://doi.org/10.1093/neuonc/noy131.

  6. Perry A, Graffeo CS, Marcellino C, Pollock BE, Wetjen NM, Meyer FB. Pediatric Pituitary Adenoma: Case Series, Review of the Literature, and a Skull Base Treatment Paradigm. J Neurol Surg B Skull Base. 2018;79(1):91-114. https://doi.org/10.1055/s-0038-1625984.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Keil MF, Stratakis CA. Pituitary tumors in childhood: update of diagnosis, treatment and molecular genetics. Expert Rev Neurother. 2008 Apr;8(4):563-74. https://doi.org/10.1586/14737175.8.4.563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Osamura RY, Grossman A, Korbonits M, Kovacs K, Lopes MBS, Matsuno A, Trouillas J. WHO Classification of Tumours of Endocrine Organs. WHO; Lyon, France: 2017. Pituitary adenoma; pp. 14–18. Chapter 1: Tumors of the Pituitary Gland.

  9. Asa SL. Challenges in the Diagnosis of Pituitary Neuroendocrine Tumors. Endocr Pathol. 2021 Jun;32(2):222-227. https://doi.org/10.1007/s12022-021-09678-x. Epub 2021 Apr 17.

    Article  PubMed  Google Scholar 

  10. Mete O, Asa SL. Structure, Function, and Morphology in the Classification of Pituitary Neuroendocrine Tumors: the Importance of Routine Analysis of Pituitary Transcription Factors. Endocr Pathol 2020; 31(4):330-336.

    Article  PubMed  Google Scholar 

  11. Villa C, Vasiljevic A, Jaffrain-Rea ML, Ansorge O, Asioli S, Barresi V, Chinezu L, Gardiman MP, Lania A, et al. A standardised diagnostic approach to pituitary neuroendocrine tumours (PitNETs): a European Pituitary Pathology Group (EPPG) proposal. Virchows Arch. 2019 Dec;475(6):687-692. https://doi.org/10.1007/s00428-019-02655-0.

    Article  CAS  PubMed  Google Scholar 

  12. Song ZJ, Reitman ZJ, Ma Chen JH, Zhang QL ZY, et al. The genome-wide mutational landscape of pituitary adenomas. Cell Res 26, 1255–1259 (2016). https://doi.org/10.1038/cr.2016.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bi WL, Horowitz P, Greenwald NF, Abedalthagafi M, Agarwalla PK, Gibson WJ, et al. Landscape of genomic alterations in pituitary adenomas. Clin Cancer Res 2017;23:1841–51. https://doi.org/10.1158/1078-0432.CCR-16-0790.

    Article  CAS  PubMed  Google Scholar 

  14. Newey PJ, Nesbit, MA, Rimmer AJ, Head RA, Gorvin CM, et al. Whole-exome sequencing studies of nonfunctioning pituitary adenomas. J Clin Endocrinol Metab. 2013 Apr;98(4):E796-800. https://doi.org/10.1210/jc.2012-4028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barry S, Korbonits M. Update on the genetics of pituitary tumors. Endocrinol Metab Clin North Am. 2020 Sep;49(3):433-452. https://doi.org/10.1016/j.ecl.2020.05.005. PMID: 32741481.

    Article  PubMed  Google Scholar 

  16. Reincke M, Sbiera S, Hayakawa A, Theodoropoulou M, Osswald A, Beuschlein F, et al. Mutations in the deubiquitinase gene USP8 cause Cushing's disease. Nat Genet 2014;47:31–8. https://doi.org/10.1038/ng.3166.

    Article  CAS  PubMed  Google Scholar 

  17. Ma ZY, Song ZJ, Chen JH, Wang YF, Li SQ, Zhou LF, et al. Recurrent gain-of-function USP8 mutations in Cushing's disease. Cell Res. 2015;25(3):306-17. https://doi.org/10.1038/cr.2015.20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Välimäki N, Demir H, Pitkänen E, Kaasinen E, Karppinen A, Kivipelto L, et al. Whole-genome sequencing of growth hormone (GH)-secreting pituitary adenomas. J Clin Endocrinol Metab 2015;100:3918–27. https://doi.org/10.1210/jc.2015-3129.

    Article  CAS  PubMed  Google Scholar 

  19. Neou M, Villa C, Armignacco R, Jouinot A, Raffin-Sanson ML, Septier A, Letourneur F, Diry S, Diedisheim M, Izac B, Gaspar C, et al. Pangenomic Classification of Pituitary Neuroendocrine Tumors. Cancer Cell. 2020 Jan 13;37(1):123-134.e5. https://doi.org/10.1016/j.ccell.2019.11.002.

    Article  CAS  PubMed  Google Scholar 

  20. Asa SL, Mete O, Ezzat S. Genomics and epigenomics of pituitary tumors: what do pathologists need to know? Endocr Pathol. 2021 Mar;32(1):3-16. https://doi.org/10.1007/s12022-021-09663-4.

    Article  PubMed  Google Scholar 

  21. Salomon MP, Wang X, Marzese DM, Hsu SC, Nelson N, Zhang X, et al. The epigenomic landscape of pituitary adenomas reveals specific alterations and differentiates among acromegaly, cushing’s disease and endocrine-inactive subtypes. Clin Cancer Res. 2018;24:4126–36. https://doi.org/10.1158/1078-0432.CCR-17-2206.

    Article  CAS  PubMed  Google Scholar 

  22. Blackburn EH. Telomeres and telomerase: Their mechanisms of action and the effects of altering their functions. FEBS Lett 2005;579:859-62. https://doi.org/10.1016/j.febslet.2004.11.036.

    Article  CAS  PubMed  Google Scholar 

  23. Blackburn EH, Epel ES, Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science 2015;350:1193-8. https://doi.org/10.1126/science.aab3389.

    Article  CAS  PubMed  Google Scholar 

  24. Oganesian L, Karlseder J. Telomeric armor: The layers of end protection. J Cell Sci 2009;122:4013-25. https://doi.org/10.1242/jcs.050567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barthel FP, Wei W, Tang M, Martinez-Ledesma E, Hu X, Amin SB, et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat Genet 2017;49:349-57. https://doi.org/10.1038/ng.3781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 1995;14:4240-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 1997;3:1271-4. https://doi.org/10.1038/nm1197-1271.

    Article  CAS  PubMed  Google Scholar 

  28. Dilley RL, Greenberg RA. ALTernative telomere maintenance and cancer. Trends Cancer 2015;1:145-56. https://doi.org/10.1016/j.trecan.2015.07.007.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Heaphy CM, Subhawong AP, Hong SM, Goggins MG, Montgomery EA, Gabrielson E, et al. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol 2011;179:1608-15. doi: https://doi.org/10.1016/j.ajpath.2011.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Henson JD, Neumann AA, Yeager TR, Reddel RR. Alternative lengthening of telomeres in mammalian cells. Oncogene 2002;21:598-610. https://doi.org/10.1038/sj.onc.1205058.

    Article  CAS  PubMed  Google Scholar 

  31. Wang Z, Rice SV, Chang TC, Liu Y, Liu Q, Qin N, et al. Molecular mechanism of telomere length dynamics and its prognostic value in pediatric cancers. J Natl Cancer Inst 2020;112:756-64. https://doi.org/10.1093/jnci/djz210.

    Article  CAS  PubMed  Google Scholar 

  32. De Vitis M, Berardinelli F, Sgura A. Telomere length maintenance in cancer: At the crossroad between telomerase and alternative lengthening of telomeres (ALT). Int J Mol Sci 2018;19:606. https://doi.org/10.3390/ijms19020606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 2011;333:425. https://doi.org/10.1126/science.1207313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Henson JD, Reddel RR. Assaying and investigating alternative lengthening of telomeres activity in human cells and cancers. FEBS Lett 2010;584:3800-11. https://doi.org/10.1016/j.febslet.2010.06.009.

    Article  CAS  PubMed  Google Scholar 

  35. Akincilar SC, Unal B, Tergaonkar V. Reactivation of telomerase in cancer. Cell Mol Life Sci 2016;73:1659-70. doi: https://doi.org/10.1007/s00018-016-2146-9 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stewart SA, Hahn WC, O'Connor BF, Banner EN, Lundberg AS, Modha P, et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci U S A 2002;99:12606-11. https://doi.org/10.1073/pnas.182407599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in tetrahymena extracts. Cell 1985;43:405-13. https://doi.org/10.1016/0092-8674(85)90170-9.

    Article  CAS  PubMed  Google Scholar 

  38. Boresowicz J, Kober P, Rusetska N, Maksymowicz M, Goryka K, et al. Telomere length and TERT abnormalities in pituitary adenomas. Neuro Endocrinol Lett 2018; 39(1):45-55.

    Google Scholar 

  39. Chen C, Han S, Meng L, Li Z, Zhang X, Wu A. TERT promoter mutations lead to high transcriptional activity under hypoxia and temozolomide treatment and predict poor prognosis in gliomas. PLoS One. 2014 Jun 17;9(6):e100297. https://doi.org/10.1371/journal.pone.0100297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martins CS, de Castro M, Calado RT. Absence of TERT promoter mutations in pituitary adenomas. J Endocrinol Invest. 2016 Aug;39(8):933-4. https://doi.org/10.1007/s40618-016-0479-8.

    Article  CAS  PubMed  Google Scholar 

  41. Köchling M, Ewelt C, Fürtjes G, Peetz-Dienhart S, Koos B, Hasselblatt M, Paulus W, Stummer W, Brokinkel B. hTERT promoter methylation in pituitary adenomas. Brain Tumor Pathol. 2016 Jan;33(1):27-34. https://doi.org/10.1007/s10014-015-0230-8.

    Article  CAS  PubMed  Google Scholar 

  42. Koelsche C, Sahm F, Capper D, Reuss D, et al. Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol. 2013 Dec;126(6):907-15. https://doi.org/10.1007/s00401-013-1195-5.

    Article  CAS  PubMed  Google Scholar 

  43. Xu B, Peng M, Song Q. The co-expression of telomerase and ALT pathway in human breast cancer tissues. Tumour Biol 2014;35:4087-93. https://doi.org/10.1007/s13277-013-1534-0.

    Article  CAS  PubMed  Google Scholar 

  44. Danussi C, Bose P, Parthasarathy PT, Silberman PC, Van Arnam JS, Vitucci M, et al. Atrx inactivation drives disease-defining phenotypes in glioma cells of origin through global epigenomic remodeling. Nat Commun 2018;9:1057. https://doi.org/10.1038/s41467-018-03476-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brosnan-Cashman JA, Yuan M, Graham MK, Rizzo AJ, Myers KM, Davis C, et al. ATRX loss induces multiple hallmarks of the alternative lengthening of telomeres (ALT) phenotype in human glioma cell lines in a cell line-specific manner. PLoS One 2018;13:e0204159

  46. Yost KE, Clatterbuck Soper SF, Walker RL, Pineda MA, Zhu YJ, Ester CD, et al. Rapid and reversible suppression of ALT by DAXX in osteosarcoma cells. Sci Rep 2019;9:4544. https://doi.org/10.1038/s41598-019-41058-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Minasi S, Baldi C, Pietsch T et al. Telomere elongation via alternative lengthening of telomeres (ALT) and telomerase activation in primary metastatic medulloblastoma of childhood. J Neurooncol 2019 May;142(3):435-444. https://doi.org/10.1007/s11060-019-03127-w.

    Article  CAS  PubMed  Google Scholar 

  48. Minasi S, Baldi C, Gianno F, Antonelli M et al. Alternative lengthening of telomeres in molecular subgroups of paediatric high-grade glioma. Childs Nerv Syst. 2021;37(3):809-818. https://doi.org/10.1007/s00381-020-04933-8.

    Article  PubMed  Google Scholar 

  49. Heaphy, C.M., Bi, W.L., Coy, S. et al. Telomere length alterations and ATRX/DAXX loss in pituitary adenomas. Mod Pathol 33, 1475–1481 (2020). https://doi.org/10.1038/s41379-020-0523-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Poon SS, Lansdorp PM (2001) Quantitative fluorescence in situ hybridization (Q-FISH). Curr Protoc Cell Biol. Chapter 18, Unit18 14. Wiley.

  51. Diplas BH, He X, Brosnan-Cashman JA, Liu H, Chen LH, Wang Z, et al. The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma. Nat Commun. 2018;9:2087. https://doi.org/10.1038/s41467-018-04448-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Panier S, Maric M, Hewitt G, Mason-Osann E, Gali H, Dai A, et al. SLX4IP antagonizes promiscuous BLM activity during ALT maintenance. Mol Cell 2019;76:27–43. https://doi.org/10.1016/j.molcel.2019.07.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen J, Schmidt RE, Dahiya S. Pituitary adenoma in pediatric and adolescent populations. J Neuropathol Exp Neurol. 2019;78:626–32. https://doi.org/10.1093/jnen/nlz040.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Casar-Borota O, Botling J, Granberg D, Stigare J, Wikstrom J, Boldt HB, et al. Serotonin, ATRX, and DAXX expression in pituitary adenomas: markers in the differential diagnosis of neuroendocrine tumors of the sellar region. Am J Surg Pathol. 2017;41:1238–46. https://doi.org/10.1097/PITNETS.0000000000000908.

    Article  PubMed  Google Scholar 

  55. Guo F, Wang G, Wang F, Xu D, Liu X. Identification of novel genes involved in the pathogenesis of an ACTH-secreting pituitary carcinoma: a case report and literature review. Front Oncol. 2018;8:510. https://doi.org/10.3389/fonc.2018.00510.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Casar-Borota O, Bünsow Boldt H, Edén Engström B, Skovsager Andersen M, Baussart B, et al. Corticotroph Aggressive Pituitary Tumors and Carcinomas Frequently Harbor ATRX Mutations. J Clin Endocrinol Metab 2021;106(4):1183-1194. https://doi.org/10.1210/clinem/dgaa749.

    Article  PubMed  Google Scholar 

  57. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, Tonjes M, Hovestadt V, Albercht S, Kool M, Nantel A, Konermann C et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231. https://doi.org/10.1038/nature10833.

    Article  CAS  PubMed  Google Scholar 

  58. Miyake Y, Adachi JI, Suzuki T, Mishima K, Araki R, Mizuno R, Nishikawa R. TERT promoter methylation is significantly associated with TERT upregulation and disease progression in pituitary adenomas. J Neurooncol. 2019 Jan;141(1):131-138. https://doi.org/10.1007/s11060-018-03016-8.

    Article  CAS  PubMed  Google Scholar 

  59. Kunitoshi Chiba, Franziska K. Lorbeer, A. Hunter Shain, et al. Mutations in the promoter of the telomerase gene TERT contribute to tumorigenesis by a two-step mechanism. Science. 2017 Sep 29; 357(6358): 1416–1420. https://doi.org/10.1126/science.aao0535.

  60. Kent T, Gracias D, Shepherd S, Clynes D. Alternative Lengthening of Telomeres in Pediatric Cancer: Mechanisms to Therapies. Front Oncol 2019;9:1518. doi: https://doi.org/10.3389/fonc.2019.01518.

    Article  PubMed  Google Scholar 

  61. Minasi S, Gianno F, Alzoubi H, Antonelli M, Giangaspero F, Buttarelli FR. Mechanisms of telomere maintenance in pediatric brain tumors: Promising targets for therapy – A narrative review. Glioma 2020;3:105-18. https://doi.org/10.4103/glioma.glioma_20_20.

    Article  Google Scholar 

  62. Sommer A, Royle NJ. ALT: A Multi-Faceted Phenomenon. Genes (Basel) 2020;11:133. https://doi.org/10.3390/genes11020133.

    Article  CAS  PubMed  Google Scholar 

  63. Raverot G, Burman P, McCormack A, Heaney A, Petersenn S, Popovic V, Trouillas J, Dekkers OM; European Society of Endocrinology. European Society of Endocrinology Clinical Practice Guidelines for the management of aggressive pituitary tumours and carcinomas. Eur J Endocrinol. 2018 Jan;178(1):G1-G24. https://doi.org/10.1530/EJE-17-0796. Epub 2017 Oct 18. PMID: 29046323.

  64. Ogino LL, Lamback EB, Guterres A, de Azeredo Lima CH, Henriques DG, Barbosa MA, Silva DA, da Silva Camacho AH, Chimelli L, Kasuki L, Gadelha MR. Telomerase expression in clinically non-functioning pituitary adenomas. Endocrine. 2021 Apr;72(1):208-215. https://doi.org/10.1007/s12020-020-02524-w. Epub 2020 Oct 22. PMID: 33090306.

    Article  CAS  PubMed  Google Scholar 

  65. Ortiz-Plata A, Tena Suck ML, López-Gómez M, Heras A, Sánchez García A. Study of the telomerase hTERT fraction, PCNA and CD34 expression on pituitary adenomas. Association with clinical and demographic characteristics. J Neurooncol. 2007 Sep;84(2):159–66. https://doi.org/10.1007/s11060-007-9365-8. Epub 2007 Mar 15. PMID: 17361328.

Download references

Acknowledgements

This research was supported by BimboTu ONLUS and Il Fondo di Gio ONLUS.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Hiba Alzoubi, Marie-Lise Jaffrain-Rea, Francesca Romana Buttarelli; Methodology, formal analysis, and investigation: Simone Minasi, Francesca Gianno; Writing-original draft preparation: Hiba Alzoubi, Simone Minasi; Writing-review and editing: Francesca Romana Buttarelli, Marie-Lise Jaffrain-Rea; Resources and formal analysis: Francesca Belardinilli, Marie-Lise Jaffrain-Rea, Manila Antonelli; Funding acquisition: Felice Giangaspero, Francesca Romana Buttarelli, Manila Antonelli; Supervision: Francesca Romana Buttarelli, Felice Giangaspero.

Corresponding author

Correspondence to Francesca Romana Buttarelli.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10419 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzoubi, H., Minasi, S., Gianno, F. et al. Alternative Lengthening of Telomeres (ALT) and Telomerase Reverse Transcriptase Promoter Methylation in Recurrent Adult and Primary Pediatric Pituitary Neuroendocrine Tumors. Endocr Pathol 33, 494–505 (2022). https://doi.org/10.1007/s12022-021-09702-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-021-09702-0

Keywords

Navigation