Skip to main content

Advertisement

Log in

Automatic Detection of Alzheimer's Disease using Deep Learning Models and Neuro-Imaging: Current Trends and Future Perspectives

  • Review
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Deep learning algorithms have a huge influence on tackling research issues in the field of medical image processing. It acts as a vital aid for the radiologists in producing accurate results toward effective disease diagnosis. The objective of this research is to highlight the importance of deep learning models in the detection of Alzheimer's Disease (AD). The main objective of this research is to analyze different deep learning methods used for detecting AD. This study examines 103 research articles published in various research databases. These articles have been selected based on specific criteria to find the most relevant findings in the field of AD detection. The review was carried out based on deep learning techniques such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transfer Learning (TL). To propose accurate methods for the detection, segmentation, and severity grading of AD, the radiological features need to be examined in greater depth. This review attempts to analyze different deep learning methods applied for AD detection using neuroimaging modalities like Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), etc. The focus of this review is restricted to deep learning works based on radiological imaging data for AD detection. There are a few works that have utilized other biomarkers to understand the effect of AD. Also, articles published in English were alone considered for analysis. This work concludes by highlighting the key research issues towards effective AD detection. Though several methods have yielded promising results in AD detection, the progression from Mild Cognitive Impairment (MCI) to AD need to be analyzed in greater depth using DL models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abuhmed, T., El-Sappagh, S., & Alonso, J. M. (2021). Robust hybrid deep learning models for Alzheimer’s progression detection. Knowledge-Based Systems, 213, 106688.

    Article  Google Scholar 

  • Abdelaziz, M., Wang, T., & Elazab, A. (2021). Alzheimer’s disease diagnosis framework from incomplete multimodal data using convolutional neural networks. Journal of Biomedical Informatics, 121, 103863.

    Article  PubMed  Google Scholar 

  • AbdulAzeem, Y., Bahgat, W. M., & Badawy, M. (2021). A CNN based framework for classification of Alzheimer’s disease. Neural Computing and Applications, 33(16), 10415–10428.

    Article  Google Scholar 

  • Aderghal, K., Khvostikov, A., Krylov, A., Benois-Pineau, J., Afdel, K., & Catheline, G. (2018). Classification of alzheimer disease on imaging modalities with deep CNNs using cross-modal transfer learning. In: 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS) [Internet]. Karlstad: IEEE; p. 345–350.

  • Aderghal, K., Afdel, K., Benois-Pineau, J., & Catheline, G. (2020). Improving Alzheimer’s stage categorization with Convolutional Neural Network using transfer learning and different magnetic resonance imaging modalities. Heliyon, 6(12), e05652.

    Article  PubMed  PubMed Central  Google Scholar 

  • ADNI | Alzheimer’s Disease Neuroimaging Initiative [Internet]. Retrieved December 20, 2022, from https://adni.loni.usc.edu/

  • Albert, M., DeCarli, C., DeKosky, S., de Leon, M., Foster, N. L., Frank, R., et al. (2004). The use of MRI and PET for clinical diagnosis of dementia and investigation of cognitive impairment: a consensus report.

  • Amoroso, N., Diacono, D., Fanizzi, A., La Rocca, M., Monaco, A., Lombardi, A., et al. (2018). Deep learning reveals Alzheimer’s disease onset in MCI subjects: Results from an international challenge. Journal of Neuroscience Methods., 302, 3–9.

    Article  PubMed  Google Scholar 

  • Ashraf, A., Naz, S., Shirazi, S. H., Razzak, I., & Parsad, M. (2021). Deep transfer learning for alzheimer neurological disorder detection. Multimedia Tools and Applications, 80(20), 30117–30142.

    Article  Google Scholar 

  • Bae, J. B., Lee, S., Jung, W., Park, S., Kim, W., Oh, H., et al. (2020). Identification of Alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging. Science and Reports, 10(1), 22252.

    Article  CAS  Google Scholar 

  • Basaia, S., Agosta, F., Wagner, L., Canu, E., Magnani, G., Santangelo, R., et al. (2019). Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage: Clinical, 21, 101645.

    Article  PubMed  Google Scholar 

  • Basheera, S., & Ram, M. S. S. (2019). Convolution neural network–based Alzheimer’s disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation. Alzheimer’s Dementia: Translational Research; Clinical Interventions, 5(1), 974–986.

    PubMed  PubMed Central  Google Scholar 

  • Basheera, S., & Ram, M. S. S. (2020). A novel CNN based Alzheimer’s disease classification using hybrid enhanced ICA segmented gray matter of MRI. Computerized Medical Imaging and Graphics, 81, 101713.

    Article  PubMed  Google Scholar 

  • Basheera, S., & Ram, M. S. S. (2021). Deep learning based Alzheimer’s disease early diagnosis using T2w segmented gray matter MRI. International Journal of Imaging Systems and Technology, 31(3), 1692–1710.

    Article  Google Scholar 

  • Basher, A., Kim, B. C., Lee, K. H., & Jung, H. Y. (2021). Volumetric feature-based Alzheimer’s disease diagnosis from sMRI data using a convolutional neural network and a deep neural network. IEEE Access, 9, 29870–29882.

    Article  Google Scholar 

  • Beheshti, I., Demirel, H., & Matsuda, H. (2017). Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Computers in Biology and Medicine., 83, 109–119.

    Article  PubMed  Google Scholar 

  • Bhatkoti, P., & Paul, M. (2016). Early diagnosis of Alzheimer’s disease: A multi-class deep learning framework with modified k-sparse autoencoder classification. In: 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ) [Internet]. Palmerston North, New Zealand: IEEE, p. 1–5.

  • Bi, X., Zhao, X., Huang, H., Chen, D., & Ma, Y. (2020). Functional brain network classification for Alzheimer’s disease detection with deep features and extreme learning machine. Cognitive Computation, 12(3), 513–527.

    Article  Google Scholar 

  • Chen, Y., Shi, B., Wang, Z., Zhang, P., Smith, C. D., & Liu, J. (2017). Hippocampus segmentation through multi-view ensemble ConvNets. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) [Internet]. Melbourne, Australia: IEEE; [cited 2022 Mar 19]. p. 192–196.

  • Cheng, B., Liu, M., Zhang, D., & Shen, D. (2019). Robust multi-label transfer feature learning for early diagnosis of Alzheimer’s disease. Brain Imaging and Behavior, 13(1), 138–53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng, D., & Liu, M. (2017). Combining convolutional and recurrent neural networks for Alzheimer’s disease diagnosis using PET images. In: 2017 IEEE International Conference on Imaging Systems and Techniques (IST). Beijing: IEEE; p. 1–5.

  • Choi, J. Y., & Lee, B. (2020). Combining of multiple deep networks via ensemble generalization loss, based on MRI images, for Alzheimer’s disease classification. IEEE Signal Processing Letters, 27, 206–210.

    Article  Google Scholar 

  • Cui, R., Liu, M., Li, G., & Longitudinal analysis for Alzheimer’s disease diagnosis using RNN. In,. (2018). IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) [Internet]. Washington, DC: IEEE, 2018, 1398–1401.

    Google Scholar 

  • Cui, R., & Liu, M. (2019). RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease. Computerized Medical Imaging and Graphics, 73, 1–10.

    Article  PubMed  Google Scholar 

  • Ding, Y., Sohn, J. H., Kawczynski, M. G., Trivedi, H., Harnish, R., Jenkins, N. W., et al. (2019). A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18 F-FDG PET of the Brain. Radiology, 290(2), 456–464.

    Article  PubMed  Google Scholar 

  • Ebrahimi, A., & Luo, S. (2021). Disease neuroimaging initiative for the A. Convolutional neural networks for Alzheimer’s disease detection on MRI images. Journal of Medical Imaging, 8, (02).

  • Ebrahimi, A., Luo, S., & Chiong, R. (2020). Introducing transfer learning to 3D ResNet-18 for Alzheimer’s disease detection on MRI images. In: 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ). Wellington, New Zealand: IEEE; p. 1–6.

  • Ebrahimi, A., Luo, S., & Chiong, R. (2021). Deep sequence modelling for Alzheimer’s disease detection using MRI. Computers in Biology and Medicine, 134, 104537.

    Article  PubMed  Google Scholar 

  • Ebrahimi-Ghahnavieh, A., Luo, S., & Chiong, R. (2019). Transfer Learning for Alzheimer’s Disease Detection on MRI Images. In: 2019 IEEE International Conference on Industry 40, Artificial Intelligence, and Communications Technology (IAICT) [Internet]. BALI, Indonesia: IEEE; p. 133–138.

  • Farooq, A., Anwar, S., Awais, M., & Rehman, S. (2017). A deep CNN based multi-class classification of Alzheimer's disease using MRI. In: 2017 IEEE International Conference on Imaging Systems and Techniques (IST), p. 1–6.

  • Feng, C., Elazab, A., Yang, P., Wang, T., Lei, B., & Xiao, X. (2018). 3D convolutional neural network and stacked bidirectional recurrent neural network for Alzheimer’s disease diagnosis. In: Rekik I, Unal G, Adeli E, Park SH, editors. PRedictive Intelligence in MEdicine Cham: Springer International Publishing; p. 138–146.

  • Feng, C., Elazab, A., Yang, P., Wang, T., Zhou, F., Hu, H., et al. (2019). Deep learning framework for Alzheimer’s disease diagnosis via 3D-CNN and FSBi-LSTM. IEEE Access, 7, 63605–63618.

    Article  Google Scholar 

  • Feng, W., Halm-Lutterodt, N. V., Tang, H., Mecum, A., Mesregah, M. K., Ma, Y., et al. (2020). Automated MRI-based deep learning model for detection of Alzheimer’s disease process. International Journal of Neural Systems, 30(06), 2050032.

    Article  PubMed  Google Scholar 

  • Ge, C., Qu, Q., Gu, I.Y.-H., & Jakola, A. S. (2019). Multi-stream multi-scale deep convolutional networks for Alzheimer’s disease detection using MR images. Neurocomputing, 350, 60–9.

    Article  Google Scholar 

  • Goceri, E. (2019). Diagnosis of Alzheimer’s disease with Sobolev gradient‐based optimization and 3D convolutional neural network. International Journal for Numerical Methods in Biomedical Engineering, 35, (7).

  • Goenka, N., & Tiwari, S. (2021). Deep learning for Alzheimer prediction using brain biomarkers. Artificial Intelligence Review, 54(7), 4827–4871.

    Article  Google Scholar 

  • Gunawardena, K. A. N. N. P., Rajapakse, R. N., & Kodikara, N. D. (2017). Applying convolutional neural networks for pre-detection of alzheimer’s disease from structural MRI data. In: 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) [Internet]. Auckland: IEEE; p. 1–7.

  • Han, R., Chen, C. L. P., & Liu, Z. (2020). A novel convolutional variation of broad learning system for Alzheimer’s disease diagnosis by using MRI images. IEEE Access, 8, 214646–214657.

    Article  Google Scholar 

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Internet]. Las Vegas, NV, USA: IEEE; p. 770–8.

  • Hedayati, R., Khedmati, M., & Taghipour-Gorjikolaie, M. (2021). Deep feature extraction method based on ensemble of convolutional auto encoders: Application to Alzheimer’s disease diagnosis. Biomedical Signal Processing and Control, 66, 102397.

    Article  Google Scholar 

  • Helaly, H. A., Badawy, M., & Haikal, A. Y. (2022). Toward deep MRI segmentation for Alzheimer’s disease detection. Neural Computing and Applications, 34(2), 1047–1063.

    Article  Google Scholar 

  • Hesamian, M. H., Jia, W., He, X., & Kennedy, P. (2019). Deep learning techniques for medical image segmentation: Achievements and challenges. Journal of Digital Imaging, 32(4), 582–596.

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al. (2017) MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv:170404861

  • Huang, G., Liu, Z., & Van Der Maaten, L. (2017) Weinberger KQ. Densely Connected Convolutional Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Honolulu, HI: IEEE; p. 2261–2269.

  • Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2017). Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5mb model size. 13. ICLR conference 2017.

  • Islam, J., & Zhang, Y. (2018). Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Informatics, 5(2), 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., et al. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27(4), 685–691.

    Article  PubMed  Google Scholar 

  • Jain, R., Jain, N., Aggarwal, A., & Hemanth, D. J. (2019). Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images. Cognitive Systems Research, 57, 147–159.

    Article  Google Scholar 

  • Janghel, R. R., & Rathore, Y. K. (2021). Deep convolution neural network based system for early diagnosis of Alzheimer’s disease. IRBM, 42(4), 258–267.

    Article  Google Scholar 

  • Ji, H., Liu, Z., Yan, W. Q., & Klette, R. (2019) Early diagnosis of Alzheimer’s disease using deep learning. In: Proceedings of the 2nd International Conference on Control and Computer Vision - ICCCV 2019 [Internet]. Jeju, Republic of Korea: ACM Press [cited 2022 Mar 19]. p. 87–91.

  • Jo, T., Nho, K., Risacher, S. L., & Saykin, A. J. (2020). Deep learning detection of informative features in tau PET for Alzheimer’s disease classification. BMC Bioinformatics, 21(S21), 496.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson, K. A., Fox, N. C., Sperling, R. A., & Klunk, W. E. (2012). Brain Imaging in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine., 2(4), a006213–a006213.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, S., Lee, P., Oh, K. T., Byun, M. S., Yi, D., Lee, J. H., et al. (2021). Deep learning-based amyloid PET positivity classification model in the Alzheimer’s disease continuum by using 2-[18F]FDG PET. EJNMMI Research, 11(1), 56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiran Gulhare, K., Shukla, S. P., & Sharma, L. K. (2017). Overview on segmentation and classification for the Alzheimer’s disease detection from brain MRI. IJCTT, 43(2), 130–132.

    Article  Google Scholar 

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. In: Advances in Neural Information Processing Systems [Internet]. Curran Associates, Inc.

  • Kundaram, S. S., & Pathak, K. C. (2021). Deep Learning-Based Alzheimer Disease Detection. In: Nath V, Mandal JK, editors. Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems [Internet]. Singapore: Springer Singapore, p. 587–597.

  • Lee, G., Nho, K., Kang, B., Sohn, K.-A., & Kim, D. (2019). Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Scientific Reports, 9(1), 1952.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, B., Yamanakkanavar, N., & Choi, J. Y. (2020). Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture. Punithakumar K, editor. PLoS ONE, 15(8), e0236493.

  • Lenzi, D., Serra, L., Perri, R., Pantano, P., Lenzi, G. L., Paulesu, E., et al. (2011). Single domain amnestic MCI: A multiple cognitive domains fMRI investigation. Neurobiology of Aging., 32(9), 1542–1557.

    Article  CAS  PubMed  Google Scholar 

  • Li, F., Cheng, D., & Liu, M. (2017). Alzheimer’s disease classification based on combination of multi-model convolutional networks. In: 2017 IEEE International Conference on Imaging Systems and Techniques (IST) [Internet]. Beijing: IEEE; [cited 2022 Mar 19]. p. 1–5.

  • Li, F., & Liu, M. (2019). A hybrid Convolutional and Recurrent Neural Network for Hippocampus Analysis in Alzheimer’s Disease. Journal of Neuroscience Methods, 323, 108–118.

    Article  PubMed  Google Scholar 

  • Lin, W., Tong, T., Gao, Q., Guo, D., Du, X., Yang, Y., et al. (2018). Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment. Frontiers in Neuroscience, 5(12), 777.

    Article  Google Scholar 

  • Liu, M., Cheng, D., & Yan, W. (2018). Alzheimer’s disease neuroimaging initiative classification of Alzheimer’s disease by combination of convolutional and recurrent neural networks using FDG-PET images. Frontiers in Neuroinformatics, 12, 35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, M., Li, F., Yan, H., Wang, K., Ma, Y., Shen, L., et al. (2020). A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. NeuroImage, 208, 116459.

    Article  PubMed  Google Scholar 

  • Liu, J., Li, M., Luo, Y., Yang, S., Li, W., & Bi, Y. (2021). Alzheimer’s disease detection using depthwise separable convolutional neural networks. Computer Methods and Programs in Biomedicine, 203, 106032.

    Article  PubMed  Google Scholar 

  • Lu, B., Li, H. X., Chang, Z. K., Li, L., Chen, N. X., Zhu, Z. C., et al. (2022). A practical Alzheimer’s disease classifier via brain imaging-based deep learning on 85,721 samples. Journal of Big Data, 9(1), 101.

    Article  Google Scholar 

  • Maqsood, M., Nazir, F., Khan, U., Aadil, F., Jamal, H., Mehmood, I., et al. (2019). Transfer learning assisted classification and detection of Alzheimer’s disease stages using 3D MRI scans. Sensors, 19(11), 2645.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehmood, A., Maqsood, M., Bashir, M., & Shuyuan, Y. (2020). A deep siamese convolution neural network for multi-class classification of Alzheimer disease. Brain Sciences, 10(2), 84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Muscari, A., Clavarino, F., Allegri, V., Farolfi, A., Macchiarulo, M., Maestri, L., et al. (2021). “2-step MCI-AD”: A simple scoring system to predict rapid conversion from mild cognitive impairment to Alzheimer dementia. Archives of Gerontology and Geriatrics, 94, 104359.

    Article  PubMed  Google Scholar 

  • Nguyen, M., He, T., An, L., Alexander, D. C., Feng, J., & Yeo, B. T. T. (2020). Predicting Alzheimer’s disease progression using deep recurrent neural networks. NeuroImage, 222, 117203.

    Article  PubMed  Google Scholar 

  • NITRC: Welcome [Internet]. Retrieved December 20, 2022, from https://www.nitrc.org/

  • OASIS: Open Access Series of Imaging Studies [Internet]. Retrieved December 20, 2022, from https://www.oasis-brains.org/

  • Oh, K., Chung, Y.-C., Kim, K. W., Kim, W.-S., & Oh, I.-S. (2019). Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning. Science and Reports, 9(1), 18150.

    Article  CAS  Google Scholar 

  • Oommen, L., Chandran, S., & Prathapan, V. L. (2020). Early detection of alzheimer’s disease using deep learning techniques. Alz Res Therapy, 07(06), 12.

    Google Scholar 

  • Ortiz, A., Munilla, J., Górriz, J. M., & Ramírez, J. (2016). Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. International Journal of Neural Systems, 26(07), 1650025.

    Article  PubMed  Google Scholar 

  • Pan, D., Zeng, A., Jia, L., Huang, Y., Frizzell, T., & Song, X. (2020). Early detection of Alzheimer’s disease using magnetic resonance imaging: A novel approach combining convolutional neural networks and ensemble learning. Frontiers in Neuroscience, 13(14), 259.

    Article  Google Scholar 

  • Park, G., Hong, J., Duffy, B. A., Lee, J.-M., & Kim, H. (2021). White matter hyperintensities segmentation using the ensemble U-Net with multi-scale highlighting foregrounds. NeuroImage, 237, 118140.

    Article  PubMed  Google Scholar 

  • Puente-Castro, A., Fernandez-Blanco, E., Pazos, A., & Munteanu, C. R. (2020). Automatic assessment of Alzheimer’s disease diagnosis based on deep learning techniques. Computers in Biology and Medicine, 120, 103764.

    Article  PubMed  Google Scholar 

  • Raju, M., Gopi, V. P., Anitha, V. S., & Wahid, K. A. (2020). Multi-class diagnosis of Alzheimer’s disease using cascaded three dimensional-convolutional neural network. Physical and Engineering Sciences in Medicine, 43(4), 1219–1228.

    Article  PubMed  Google Scholar 

  • Ramzan, F., Khan, M. U. G., Rehmat, A., Iqbal, S., Saba, T., Rehman, A., et al. (2020). A deep learning approach for automated diagnosis and multi-class classification of Alzheimer’s disease stages using resting-state fMRI and residual neural networks. Journal of Medical Systems, 44(2), 37.

    Article  Google Scholar 

  • Ren, F., Yang, C., Qiu, Q., Zeng, N., Cai, C., Hou, C., et al. (2019). Exploiting discriminative regions of brain slices based on 2D CNNs for Alzheimer’s disease classification. IEEE Access, 7, 181423–181433.

    Article  Google Scholar 

  • Sarraf, S., & Tofighi, G. (2016). Classification of Alzheimer’s disease using fMRI data and deep learning convolutional neural networks. arXiv:160308631

  • Sarraf, S., Desouza, D. D., Anderson, J. A. E., & Saverino, C. (2019). MCADNNet: Recognizing stages of cognitive impairment through efficient convolutional fMRI and MRI neural network topology models. IEEE Access, 7, 155584–155600.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sathish Kumar, L., Hariharasitaraman, S., Narayanasamy, K., Thinakaran, K., Mahalakshmi, J., & Pandimurugan, V. (2022). AlexNet approach for early stage Alzheimer’s disease detection from MRI brain images. Materials Today: Proceedings, 51, 58–65.

    Google Scholar 

  • Savaş, S. (2022). Detecting the stages of Alzheimer’s disease with pre-trained deep learning architectures. Arabian Journal for Science and Engineering, 47(2), 2201–2218.

    Article  Google Scholar 

  • Scheltens, P. (2009). Imaging in Alzheimer’s disease. Clinical Research, 11(2), 9.

    Google Scholar 

  • Schonhaut, D. R., & Rabinovici, G. D. (2016). Neuroimaging advances in Alzheimer’s disease. In: Genomics, Circuits, and Pathways in Clinical Neuropsychiatry [Internet]. Elsevier; [cited 2022 Mar 19]. p. 263–82.

  • Shanmugam, J. V., Duraisamy, B., Simon, B. C., & Bhaskaran, P. (2022). Alzheimer’s disease classification using pre-trained deep networks. Biomedical Signal Processing and Control, 71, 103217.

    Article  Google Scholar 

  • Sharma, N., Ray, A., Shukla, K., Sharma, S., Pradhan, S., Srivastva, A., et al. (2010). Automated medical image segmentation techniques. Journal of Medical Physics, 35(1), 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. arXiv:14091556 [cs] [Internet].

  • Spasov, S. E., Passamonti, L., Duggento, A., Lio, P., & Toschi, N. (2018) A multi-modal convolutional neural network framework for the prediction of Alzheimer’s disease. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) [Internet]. Honolulu, HI: IEEE; p. 1271–1274.

  • Spasov, S., Passamonti, L., Duggento, A., Liò, P., & Toschi, N. (2019). A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease. NeuroImage, 189, 276–287.

    Article  PubMed  Google Scholar 

  • Sun, J., Yan, S., Song, C., & Han, B. (2020). Dual-functional neural network for bilateral hippocampi segmentation and diagnosis of Alzheimer’s disease. International Journal of Computer Assisted Radiology and Surgery, 15(3), 445–455.

    Article  PubMed  Google Scholar 

  • Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2016). Inception-v4, inception-resnet and the impact of residual connections on learning. 4278–4284. arXiv:160207261

  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015) Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE; p. 1–9.

  • Tabarestani, S., Aghili, M., Shojaie, M., Freytes, C., Cabrerizo, M., Barreto, A., et al. (2019). Longitudinal Prediction Modeling of Alzheimer Disease using Recurrent Neural Networks. In: 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) [Internet]. Chicago, IL, USA: IEEE; p. 1–4.

  • Tanveer, M., Rashid, A. H., Ganaie, M. A., Reza, M., Razzak, I., & Hua, K.-L. (2021). Classification of Alzheimer’s disease using ensemble of deep neural networks trained through transfer learning. IEEE Journal of Biomedical and Health Informatics, 1–1.

  • The Need for Early Detection and Treatment in Alzheimer’s Disease. (2016). EBioMedicine. 9:1–2

  • Thung, K.-H., Wee, C.-Y., Yap, P.-T., & Shen, D. (2016). Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans. Brain Structure & Function, 221(8), 3979–3995.

    Article  Google Scholar 

  • Tufail, A. B., Ma, Y.-K., & Zhang, Q.-N. (2020). Binary classification of Alzheimer’s disease using sMRI imaging modality and deep learning. Journal of Digital Imaging, 33(5), 1073–1090.

    Article  PubMed  PubMed Central  Google Scholar 

  • Valverde, J. M., Imani, V., Abdollahzadeh, A., De Feo, R., Prakash, M., Ciszek, R., et al. (2021). Transfer learning in magnetic resonance brain imaging: A systematic review. Journal of Imaging, 7(4), 66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Velazquez, M., Anantharaman, R., Velazquez, S., & Lee, Y. (2019). RNN-based Alzheimer’s disease prediction from prodromal stage using diffusion tensor imaging. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) [Internet]. San Diego, CA, USA: IEEE; p. 1665–1672.

  • van de Mortel, L. A., Thomas, R. M., & van Wingen, G. A. (2021). Grey matter loss at different stages of cognitive decline: A role for the thalamus in developing Alzheimer’s disease. Journal of Alzheimer’s Disease, 83(2), 705–720.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vu, T.-D., Ho, N.-H., Yang, H.-J., Kim, J., & Song, H.-C. (2018). Non-white matter tissue extraction and deep convolutional neural network for Alzheimer’s disease detection. Soft Computing, 22(20), 6825–6833.

    Article  Google Scholar 

  • Wang, S., Yi, L., Chen, Q., Meng, Z., Dong, H., & He, Z. (2019). Edge-aware fully convolutional network with CRF-RNN layer for hippocampus segmentation. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC) [Internet]. Chongqing, China: IEEE; [cited 2022 Mar 19]. p. 803–806.

  • Wee, C.-Y., Liu, C., Lee, A., Poh, J. S., Ji, H., & Qiu, A. (2019). Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations. NeuroImage: Clinical, 23, 101929.

    Article  PubMed  Google Scholar 

  • Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., Routier, A., Bottani, S., et al. (2020). Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Medical Image Analysis, 63, 101694.

    Article  PubMed  Google Scholar 

  • Woo, B., & Lee, M. (2021). Comparison of tissue segmentation performance between 2D U-Net and 3D U-Net on brain MR Images. In: 2021 International Conference on Electronics, Information, and Communication (ICEIC) [Internet]. Jeju, Korea (South): IEEE; [cited 2022 Mar 19]. p. 1–4.

  • Wu, Z., Peng, Y., Hong, M., & Zhang, Y. (2021). Gray matter deterioration pattern during Alzheimer’s disease progression: a regions-of-interest based surface morphometry study. Frontiers in Aging Neuroscience, 13, 593898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyman, B. T., Harvey, D. J., Crawford, K., Bernstein, M. A., Carmichael, O., Cole, P. E., et al. (2013). Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimer’s & Dementia, 9(3), 332–337.

    Article  Google Scholar 

  • Yamanakkanavar, N., Choi, J. Y., & Lee, B. (2020). MRI segmentation and classification of human brain using deep learning for diagnosis of Alzheimer’s disease: A survey. Sensors, 20(11), 3243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, F., Li, Z., Zhang, B., Du, H., Wang, B., & Zhang, X. (2019). Multi-modal deep learning model for auxiliary diagnosis of Alzheimer’s disease. Neurocomputing, 361, 185–195.

    Article  Google Scholar 

  • Zhang, J., Zheng, B., Gao, A., Feng, X., Liang, D., & Long, X. (2021). A 3D densely connected convolution neural network with connection-wise attention mechanism for Alzheimer’s disease classification. Magnetic Resonance Imaging, 78, 119–126.

    Article  PubMed  Google Scholar 

  • Zhao, W., Wang, X., Yin, C., He, M., Li, S., & Han, Y. (2019). Trajectories of the hippocampal subfields atrophy in the Alzheimer’s disease: a structural imaging study. Frontiers in Neuroinformatics, 22(13), 13.

    Article  Google Scholar 

  • Zhao, X., Ang, C. K. E., Acharya, U. R., & Cheong, K. H. (2021). Application of Artificial Intelligence techniques for the detection of Alzheimer’s disease using structural MRI images. Biocybernetics and Biomedical Engineering., 41(2), 456–473.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Karthik.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Illakiya, T., Karthik, R. Automatic Detection of Alzheimer's Disease using Deep Learning Models and Neuro-Imaging: Current Trends and Future Perspectives. Neuroinform 21, 339–364 (2023). https://doi.org/10.1007/s12021-023-09625-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-023-09625-7

Keywords

Navigation