Skip to main content

Advertisement

Log in

Development of PowerMap: a Software Package for Statistical Power Calculation in Neuroimaging Studies

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Although there are a number of statistical software tools for voxel-based massively univariate analysis of neuroimaging data, such as fMRI (functional MRI), PET (positron emission tomography), and VBM (voxel-based morphometry), very few software tools exist for power and sample size calculation for neuroimaging studies. Unlike typical biomedical studies, outcomes from neuroimaging studies are 3D images of correlated voxels, requiring a correction for massive multiple comparisons. Thus, a specialized power calculation tool is needed for planning neuroimaging studies. To facilitate this process, we developed a software tool specifically designed for neuroimaging data. The software tool, called PowerMap, implements theoretical power calculation algorithms based on non-central random field theory. It can also calculate power for statistical analyses with FDR (false discovery rate) corrections. This GUI (graphical user interface)-based tool enables neuroimaging researchers without advanced knowledge in imaging statistics to calculate power and sample size in the form of 3D images. In this paper, we provide an overview of the statistical framework behind the PowerMap tool. Three worked examples are also provided, a regression analysis, an ANOVA (analysis of variance), and a two-sample T-test, in order to demonstrate the study planning process with PowerMap. We envision that PowerMap will be a great aide for future neuroimaging research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57, 289–300.

    Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Desmond, J. E., & Glover, G. H. (2002). Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. Journal of Neuroscience Methods, 118(2), 115–128.

    Article  PubMed  Google Scholar 

  • Efron, B. (2004). Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. Journal of the American Statistical Association, 99, 96–104.

    Article  Google Scholar 

  • Efron, B., Tibshirani, R., Storey, J. D., & Tusher, V. G. (2001). Empirical bayes analysis of a microarray experiment. Journal of the American Statistical Association, 96, 1151–1160.

    Article  Google Scholar 

  • Friston, K. J., Worsley, K. J., Frackowiak, R. S. J., Mazziotta, J. C., & Evans, A. C. (1994). Assessing the significance of focal activations using their spatial extent. Human Brain Mapping, 1, 210–220.

    Article  Google Scholar 

  • Friston, K. J., Holmes, A., Poline, J. B., Price, C. J., & Frith, C. D. (1996). Detecting activations in PET and fMRI: levels of inference and power. NeuroImage, 4(3 Pt 1), 223–235.

    Article  PubMed  CAS  Google Scholar 

  • Friston, K. J., Holmes, A. P., & Worsley, K. J. (1999). How many subjects constitute a study? NeuroImage, 10(1), 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15(4), 870–878.

    Article  PubMed  Google Scholar 

  • Hayasaka, S., & Nichols, T. E. (2003). Validating cluster size inference: random field and permutation methods. NeuroImage, 20(4), 2343–2356.

    Article  PubMed  Google Scholar 

  • Hayasaka, S., Phan, K. L., Liberzon, I., Worsley, K. J., & Nichols, T. E. (2004). Nonstationary cluster-size inference with random field and permutation methods. NeuroImage, 22(2), 676–687.

    Article  PubMed  Google Scholar 

  • Hayasaka, S., Peiffer, A. M., Hugenschmidt, C. E., & Laurienti, P. J. (2007). Power and sample size calculation for neuroimaging studies by non-central random field theory. NeuroImage, 37(3), 721–730.

    Article  PubMed  Google Scholar 

  • Hugenschmidt, C. E., Peiffer, A. M., Kraft, R. A., Casanova, R., Deibler, A. R., Burdette, J. H., et al. (2008). Relating imaging indices of white matter integrity and volume in healthy older adults. Cerebral Cortex, 18(2), 433–442.

    Article  PubMed  Google Scholar 

  • Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, vol. 2 (2nd ed.). New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Kiebel, S. J., Poline, J. B., Friston, K. J., Holmes, A. P., & Worsley, K. J. (1999). Robust smoothness estimation in statistical parametric maps using standardized residuals from the general linear model. NeuroImage, 10(6), 756–766.

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg, A., Nicodemus, K. K., Egan, M. F., Callicott, J. H., Mattay, V., & Weinberger, D. R. (2008). False positives in imaging genetics. NeuroImage, 40(2), 655–661.

    Article  PubMed  Google Scholar 

  • Mozolic, J. L., Hayasaka, S., & Laurienti, P. J. (2010). A cognitive training intervention increases resting cerebral blood flow in healthy older adults. Frontiers in Human Neuroscience, 4, 16.

    Article  PubMed  Google Scholar 

  • Mumford, J. A., & Nichols, T. E. (2008). Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation. NeuroImage, 39(1), 261–268.

    Article  PubMed  Google Scholar 

  • Murphy, K., & Garavan, H. (2004). An empirical investigation into the number of subjects required for an event-related fMRI study. NeuroImage, 22(2), 879–885.

    Article  PubMed  Google Scholar 

  • Nichols, T., & Hayasaka, S. (2003). Controlling the familywise error rate in functional neuroimaging: a comparative review. Statistical Methods in Medical Research, 12(5), 419–446.

    Article  PubMed  Google Scholar 

  • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl 1), S208–S219.

    Article  PubMed  Google Scholar 

  • Van Horn, J. D., Ellmore, T. M., Esposito, G., & Berman, K. F. (1998). Mapping voxel-based statistical power on parametric images. NeuroImage, 7(2), 97–107.

    Article  PubMed  Google Scholar 

  • Worsley, K. J. (1994). Local maxima and the expected euler characteristic of excursion sets of chi-squared, F and t fields. Advances in Applied Probability, 26, 13–42.

    Article  Google Scholar 

  • Worsley, K. J. (1996). The geometry of random images. Chance, 9, 27–40.

    Google Scholar 

  • Worsley, K. J. (2005). An improved theoretical P value for SPMs based on discrete local maxima. NeuroImage, 28(4), 1056–1062.

    Article  PubMed  CAS  Google Scholar 

  • Worsley, K. J., Evans, A. C., Marrett, S., & Neelin, P. (1992). A three-dimensional statistical analysis for CBF activation studies in human brain. Journal of Cerebral Blood Flow and Metabolism, 12(6), 900–918.

    Article  PubMed  CAS  Google Scholar 

  • Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A unified statistical approach for determining significant signals in images of cerebral activations. Human Brain Mapping, 4, 58–73.

    Article  PubMed  CAS  Google Scholar 

  • Zarahn, E., & Slifstein, M. (2001). A reference effect approach for power analysis in fMRI. NeuroImage, 14(3), 768–779.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institute of Neurological Disorders and Stroke (NINDS) (NS059793). The authors would like to thank Ms. Malaak Moussa for reviewing our analysis results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Hayasaka.

Appendix A

Appendix A

For three independent random variables X, Y, and Z, (means μ X , μ Y , and μ Z , and variances \( \sigma_X^2,\sigma_Y^2,\;{\text{and}}\;\sigma_Z^2 \), respectively), the variance of the product XYZ is

$$ \matrix{ {Var\left( {XYZ} \right) = \sigma_X^2\sigma_Y^2\sigma_Z^2 + \mu_X^2\sigma_Y^2\sigma_Z^2 + \mu_Y^2\sigma_X^2\sigma_Z^2 + \mu_Z^2\sigma_X^2\sigma_Y^2} \\ { + \mu_X^2\mu_Y^2\sigma_Z^2 + \mu_X^2\mu_Z^2\sigma_Y^2 + \mu_Y^2\mu_Z^2\sigma_X^2} \\ }<!end array> $$
(A1)

Another useful result is that, for a chi-square random variable W with df = v, then the expected value of W r for real-valued r is given by

$$ E\left[ {{W^r}} \right] = \frac{{{2^r}\left( {\frac{v}{2} + r} \right)}}{{\Gamma \left( {\frac{v}{2}} \right)}} $$
(A2)

where Γ denotes the gamma function (Johnson et al. 1995). Worsley has shown that the gradient of a 3D T-random field T, ∇T, follows the distribution

$$ \nabla T = {m^{{\frac{1}{2}}}}\left( {1 + \frac{{{T^2}}}{m}} \right){S^{{ - \frac{1}{2}}}}Z $$

where T is the value of a T-random random field with df = m at the location where the gradient is calculated, S is a chi-square random variable with df = m + 1, and Z is a 3 × 3-dimensional normal random variable with mean zero and variance defined by a matrix Λ, with T, S, and Z are all independent (Worsley 1994). The gradient of T depends on the value of T itself. The variance matrix Λ needs to be estimated based on an observed T-statistic image. Since ∇T can be seen as the product of three independent random variables, namely, \( X = {m^{{1/2}}}\left( {{{{1 + {T^2}}} \left/ {m} \right.}} \right),Y = {S^{{ \frac{{ - 1}}{2} }}} \), and Z, we can use (A1) to calculate its variance. Using (A2), we can calculate the means and the variances of these variables:

$$ \begin{array}{*{20}{c}} {{{\mu }_{X}} = {{m}^{{\frac{1}{2}}}}\left( {\frac{{m - 1}}{{m - 2}}} \right)\sigma _{X}^{2} = \frac{{2m\left( {m - 1} \right)}}{{{{{\left( {m - 2} \right)}}^{2}}\left( {m - 4} \right)}}} \\ {{{\mu }_{Y}} = \frac{{{{2}^{{\frac{1}{2}}}}\Gamma \left( {m/2} \right)}}{{\Gamma \left( {\frac{{m + 1}}{2}} \right)}}\sigma _{Y}^{2} = \frac{1}{{m - 1}} - \mu _{Y}^{2}} \\ {{{\mu }_{Z}} = \left( {\begin{array}{*{20}{c}} {000} \hfill \\ {000} \hfill \\ {000} \hfill \\ \end{array} } \right)\sigma _{Z}^{2} = \Lambda } \\ \end{array} $$

Since μ Z is zero, some terms in (A1) cancel and the variance of ∇T can be obtained as

$$ Var\left( {\nabla T} \right) = \left( {\sigma_X^2\sigma_Y^2 + \mu_X^2\sigma_Y^2 + \mu_Y^2\sigma_X^2 + \mu_X^2\mu_Y^2} \right)\Lambda $$

and this can be solved for Λ to yield (4). In order to derive the similar results for ∇F, we focus on the variance of ∇G where G is a random field defined as (m/n)F. In other words, G is a random field defined as the ratio U/V of two chi-square random fields U (with df = m) and V (df = n). Worsley (Worsley 1994) has described that ∇G can be described as

$$ \nabla G = 2{G^{{ - \frac{1}{2}}}}\left( {1 + G} \right){W^{{ - \frac{1}{2}}}}Z $$

where G is the value of a G-random field at the location where the gradient is calculated, with G defined as (m/n)F, F is an F-random variable with df = (m,n), W is a chi-square random variable with df = m + n, and Z is a 3 × 3-dimensional normal random variable as described above. The gradient of G depends on G itself. If we let X = 2G 1/2 (1 + G), Y = W-1/2, and Z as it is, then their means and variances are

$$ \begin{array}{*{20}{c}} {{{\mu }_{X}} = \left( {m + n - 2} \right)\left\{ {\Gamma \left( {\frac{{m + 1}}{2}} \right)\Gamma \left( {\frac{{n - 3}}{2}} \right){{{\left( {\Gamma \left( {\frac{m}{2}} \right)\Gamma \left( {\frac{n}{2}} \right)} \right)}}^{{ - 1}}}} \right\}} \\ {\sigma _{X}^{2} = \left( {m + n - 2} \right)\left( {m + n - 4} \right)\frac{m}{{\left( {n - 2} \right)\left( {n - 4} \right)\left( {n - 6} \right)}} - \mu _{X}^{2}} \\ {{{\mu }_{Y}} = \frac{1}{{\sqrt {2} }}\frac{{\Gamma \left( {\frac{{m + n - 1}}{2}} \right)}}{{\Gamma \left( {\frac{{m + n}}{2}} \right)}}\quad \sigma _{Y}^{2} = \frac{1}{{m + n - 2}} - \mu _{Y}^{2}} \\ {{{\mu }_{Z}} = \left( {\begin{array}{*{20}{c}} 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right)\quad \sigma _{Z}^{2} = \Lambda } \\ \end{array} $$

Then we can use these results in (A1) to derive the variance of ∇G. As in the T-random field described above, since μ Z is zero, some terms in (A1) cancel and the variance of ∇G can be obtained as

$$ Var\left( {\nabla G} \right) = \left( {\sigma_X^2\sigma_Y^2 + \mu_X^2\sigma_Y^2 + \mu_Y^2\sigma_X^2 + \mu_X^2\mu_Y^2} \right) $$

Finally, since F = (n/m)G, ∇F = (n/m)∇G. Therefore Var(∇F) = (n/m)2 Var(∇G) and this can be solved for Λ as in the T-random field, resulting in (3).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joyce, K.E., Hayasaka, S. Development of PowerMap: a Software Package for Statistical Power Calculation in Neuroimaging Studies. Neuroinform 10, 351–365 (2012). https://doi.org/10.1007/s12021-012-9152-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-012-9152-3

Keywords

Navigation