Skip to main content

Advertisement

Log in

Optimizing Hippocampal Segmentation in Infants Utilizing MRI Post-Acquisition Processing

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

This study aims to determine the most reliable method for infant hippocampal segmentation by comparing magnetic resonance (MR) imaging post-acquisition processing techniques: contrast to noise ratio (CNR) enhancement, or reformatting to standard orientation. MR scans were performed with a 1.5 T GE scanner to obtain dual echo T2 and proton density (PD) images at term equivalent (38–42 weeks’ gestational age). 15 hippocampi were manually traced four times on ten infant images by 2 independent raters on the original T2 image, as well as images processed by: a) combining T2 and PD images (T2-PD) to enhance CNR; then b) reformatting T2-PD images perpendicular to the long axis of the left hippocampus. CNRs and intraclass correlation coefficients (ICC) were calculated. T2-PD images had 17% higher CNR (15.2) than T2 images (12.6). Original T2 volumes’ ICC was 0.87 for rater 1 and 0.84 for rater 2, whereas T2-PD images’ ICC was 0.95 for rater 1 and 0.87 for rater 2. Reliability of hippocampal segmentation on T2-PD images was not improved by reformatting images (rater 1 ICC = 0.88, rater 2 ICC = 0.66). Post-acquisition processing can improve CNR and hence reliability of hippocampal segmentation in neonate MR scans when tissue contrast is poor. These findings may be applied to enhance boundary definition in infant segmentation for various brain structures or in any volumetric study where image contrast is sub-optimal, enabling hippocampal structure-function relationships to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abernethy, L. J., Palaniappan, M., & Cooke, R. W. (2002). Quantitative magnetic resonance imaging of the brain in survivors of very low birth weight. Archives of Disease in Childhood, 87(4), 279–283.

    Article  PubMed  CAS  Google Scholar 

  • Abernethy, L. J., Cooke, R. W. I., & Foulder-Hughes, L. (2004). Caudate and hippocampal volumes, intelligence, and motor impairment in 7-year-old children who were born preterm. Pediatric Research, 55(5), 884–893.

    Article  PubMed  Google Scholar 

  • Bartzokis, G., Altshuler, L. L., Greider, T., Curran, J., Keen, B., & Dixon, W. J. (1998). Reliability of medial temporal lobe volume measurements using reformatted 3D images. Psychiatry Research, 82(1), 11–24.

    Article  PubMed  CAS  Google Scholar 

  • Bergouignan, L., Chupin, M., Czechowska, Y., Kinkingnehun, S., Lemogne, C., Le Bastard, G., et al. (2009). Can voxel based morphometry, manual segmentation and automated segmentation equally detect hippocampal volume differences in acute depression? NeuroImage, 45(1), 29–37.

    Article  PubMed  Google Scholar 

  • Bridle, N., Pantelis, C., Wood, S. J., Coppola, R., Velakoulis, D., McStephen, M., et al. (2002). Thalamic and caudate volumes in monozygotic twins discordant for schizophrenia. Australian and New Zealand Journal of Psychiatry, 36(3), 347–354.

    Article  PubMed  Google Scholar 

  • Conklin, J., Winter, J. D., Thompson, R. T., & Gelman, N. (2008). High-contrast 3D neonatal brain imaging with combined T1- and T2-weighted MP-RAGE. Magnetic Resonance in Medicine, 59(5), 1190–1196.

    Article  PubMed  Google Scholar 

  • Duvernoy, H. M. (1988). The human Hippocampus. An atlas of applied anatomy. Munchen: J. F. Bergmann Verlag.

  • Geuze, E., Vermetten, E., & Bremner, J. D. (2005a). MR-based in vivo hippocampal volumetrics: 1. Review of methodologies currently employed. Molecular Psychiatry, 10(2), 147–159.

    Google Scholar 

  • Geuze, E., Vermetten, E., & Bremner, J. D. (2005b). MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders. Molecular Psychiatry, 10(2), 160–184.

    Article  CAS  Google Scholar 

  • Hasboun, D., Chantome, M., Zouaoui, A., Sahel, M., Deladoeuille, M., Sourour, N., et al. (1996). MR determination of hippocampal volume: Comparison of three methods. American Journal of Neuroradiology, 17(6), 1091–1098.

    PubMed  CAS  Google Scholar 

  • Jack, C., Jr., Bentley, M., Twomey, C., & Zinsmeister, A. (1990). MR imaging-based volume measurements of the hippocampal formation and anterior temporal lobe: validation studies. Radiology, 176(1), 205–209.

    PubMed  Google Scholar 

  • Jack, C. R., Jr., Theodore, W. H., Cook, M., & McCarthy, G. (1995). MRI-based hippocampal volumetrics: data acquisition, normal ranges, and optimal protocol. Magnetic Resonance Imaging, 13(8), 1057–1064.

    Article  PubMed  Google Scholar 

  • Jeukens, C. R., Vlooswijk, M. C., Majoie, H. J., de Krom, M. C., Aldenkamp, A. P., Hofman, P. A., et al. (2009). Hippocampal MRI volumetry at 3 Tesla: reliability and practical guidance. Investigative Radiology, 44(9), 509–517.

    Article  PubMed  Google Scholar 

  • Klauschen, F., Goldman, A., Barra, V., Meyer-Lindenberg, A., & Lundervold, A. (2009). Evaluation of automated brain MR image segmentation and volumetry methods. Human Brain Mapping, 30(4), 1310–1327.

    Article  PubMed  Google Scholar 

  • Konrad, C., Ukas, T., Nebel, C., Arolt, V., Toga, A. W., & Narr, K. L. (2009). Defining the human hippocampus in cerebral magnetic resonance images–an overview of current segmentation protocols. NeuroImage, 47(4), 1185–1195.

    Article  PubMed  CAS  Google Scholar 

  • Kretschmann, H. J., Kammradt, G., Krauthausen, I., Sauer, B., & Wingert, F. (1986). Growth of the hippocampal formation in man. Bibliotheca Anatomica, 28, 27–52.

    PubMed  Google Scholar 

  • Lim, K. O., & Pfefferbaum, A. (1989). Segmentation of MR brain images into cerebrospinal fluid spaces, white and grey matter. Journal of Computer Assisted Tomography, 13, 588–593.

    Article  PubMed  CAS  Google Scholar 

  • Lodygensky, G. A., Rademaker, K., Zimine, S., Gex-Fabry, M., Lieftink, A. F., Lazeyras, F., et al. (2005). Structural and functional brain development after hydrocortisone treatment for neonatal chronic lung disease. Pediatrics, 116(1), 1–7.

    Article  PubMed  Google Scholar 

  • Lodygensky, G. A., Seghier, M. L., Warfield, S. K., Tolsa, C. B., Sizonenko, S., Lazeyras, F., et al. (2008). Intrauterine growth restriction affects the preterm infant’s hippocampus. Pediatric Research, 63(4), 438–443.

    Article  PubMed  Google Scholar 

  • Mai, J. K., Assheuer, J., & Paxinos, G. (1997). Atlas of the human brain. San Diego: Academic.

    Google Scholar 

  • Malykhin, N. V., Bouchard, T. P., Ogilvie, C. J., Coupland, N. J., Seres, P., & Camicioli, R. (2007). Three-dimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail. Psychiatry Research, 155(2), 155–165.

    Article  PubMed  Google Scholar 

  • Naidich, T. P., Daniels, D. L., Haughton, V. M., Williams, A., Pojunas, K., & Palacios, E. (1987). Hippocampal formation and related structures of the limbic lobe: anatomic-MR correlation. Part I. Surface features and coronal sections. Radiology, 162(3), 747–754.

    PubMed  CAS  Google Scholar 

  • Obenaus, A., Yong-Hing, C. J., Tong, K. A., & Sarty, G. E. (2001). A reliable method for measurement and normalization of pediatric hippocampal volumes. Pediatric Research, 50(1), 124–132.

    Article  PubMed  CAS  Google Scholar 

  • Pantel, J., O’Leary, D. S., Cretsinger, K., Bockholt, H. J., Keefe, H., Magnotta, V. A., et al. (2000). A new method for the in vivo volumetric measurement of the human hippocampus with high neuroanatomical accuracy. Hippocampus, 10(6), 752–758.

    Article  PubMed  CAS  Google Scholar 

  • Patwardhan, A. J., Eliez, S., Warsofsky, I. S., Glover, G. H., White, C. D., Giedd, J. N., et al. (2001). Effects of image orientation on the comparability of pediatric brain volumes using three-dimensional MR data. Journal of Computer Assisted Tomography, 25(3), 452–457.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, B. S., Vohr, B., Staib, L. H., Cannistraci, C. J., Dolberg, A., Schneider, K. C., et al. (2000). Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. Journal of the American Medical Association, 284(15), 1939–1947.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, O., Karns, C. M., & Courchesne, E. (2001). Development of the hippocampal formation from 2 to 42 years: MRI evidence of smaller area dentata in autism. Brain, 124(Pt 7), 1317–1324.

    Article  PubMed  CAS  Google Scholar 

  • Schuff, N., Woerner, N., Boreta, L., Kornfield, T., Shaw, L. M., Trojanowski, J. Q., et al. (2009). MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain, 132(Pt 4), 1067–1077.

    PubMed  CAS  Google Scholar 

  • Thompson, D. K., Wood, S. J., Doyle, L. W., Warfield, S. K., Lodygensky, G. A., Anderson, P. J., et al. (2008). Neonate hippocampal volumes: Prematurity, perinatal predictors, and 2-year outcome. Annals of Neurology, 63(5), 642–651.

    Article  PubMed  Google Scholar 

  • Thompson, D. K., Wood, S. J., Doyle, L. W., Warfield, S. K., Egan, G. F., & Inder, T. E. (2009). MR-determined hippocampal asymmetry in full-term and preterm neonates. Hippocampus, 19(2), 118–123.

    Article  PubMed  Google Scholar 

  • Vannier, M. W., Butterfield, R. L., Jordan, D., Murphy, W. A., Levitt, R. G., & Gado, M. (1985). Multispectral analysis of magnetic resonance images. Radiology, 154(1), 221–224.

    PubMed  CAS  Google Scholar 

  • Watson, C., Andermann, F., Gloor, P., Jonesgotman, M., Peters, T., Evans, A., et al. (1992). Anatomic Basis of Amygdaloid and Hippocampal Volume Measurement by Magnetic-Resonance-Imaging. Neurology, 42(9), 1743–1750.

    PubMed  CAS  Google Scholar 

  • Wieshmann, U. C., Free, S. L., Stevens, J. M., & Shorvon, S. D. (1998). Image contrast and hippocampal volumetric measurements. Magnetic Resonance Imaging, 16(1), 13–17.

    Article  PubMed  CAS  Google Scholar 

  • Williams, L. A., Gelman, N., Picot, P. A., Lee, D. S., Ewing, J. R., Han, V. K., et al. (2005). Neonatal brain: regional variability of in vivo MR imaging relaxation rates at 3.0T–initial experience. Radiology, 235(2), 595–603.

    Article  PubMed  Google Scholar 

  • Williams, L. A., DeVito, T. J., Winter, J. D., Orr, T. N., Thompson, R. T., & Gelman, N. (2007). Optimization of 3D MP-RAGE for neonatal brain imaging at 3.0T. Magnetic Resonance Imaging, 25(8), 1162–1170.

    Article  PubMed  Google Scholar 

  • Wu, W. C., Huang, C. C., Chung, H. W., Liou, M., Hsueh, C. J., Lee, C. S., et al. (2005). Hippocampal alterations in children with temporal lobe epilepsy with or without a history of febrile convulsions: evaluations with MR volumetry and proton MR spectroscopy. American Journal of Neuroradiology, 26(5), 1270–1275.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Merilyn Bear, Michael Kean, Katherine Lee, Gregory A. Lodygensky, Hong X. Wang, Michael J.Farrell, Peter J. Anderson, and Rodney W. Hunt, the VIBeS and Developmental Imaging teams at the Murdoch Childrens Research Institute, as well as the families and infants who participated in this study.

Grant sponsors

National Medical and Health Research Council of Australia; Grant number: 237117; Grant sponsor: NIH; Grant number: R01 RR021885, R01 GM074068, R01 EB008015, P30 HD018655; Grant sponsor: NHMRC Research Fellowship; Grant number: 400317; Grant sponsors: United Cerebral Palsy Foundation (USA), Mather Foundation (USA), Brown Foundation (USA), NHMRC Clinical Career Development Award, NARSAD Young Investigator Award, Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deanne K. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, D.K., Ahmadzai, Z.M., Wood, S.J. et al. Optimizing Hippocampal Segmentation in Infants Utilizing MRI Post-Acquisition Processing. Neuroinform 10, 173–180 (2012). https://doi.org/10.1007/s12021-011-9137-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-011-9137-7

Keywords

Navigation