Skip to main content

Advertisement

Log in

Screening and diagnosis of primary aldosteronism. Consensus document of all the Spanish Societies involved in the management of primary aldosteronism

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Primary aldosteronism (PA) is the most frequent cause of secondary hypertension (HT), and is associated with a higher cardiometabolic risk than essential HT. However, PA remains underdiagnosed, probably due to several difficulties clinicians usually find in performing its diagnosis and subtype classification. The aim of this consensus is to provide practical recommendations focused on the prevalence and the diagnosis of PA and the clinical implications of aldosterone excess, from a multidisciplinary perspective, in a nominal group consensus approach by experts from the Spanish Society of Endocrinology and Nutrition (SEEN), Spanish Society of Cardiology (SEC), Spanish Society of Nephrology (SEN), Spanish Society of Internal Medicine (SEMI), Spanish Radiology Society (SERAM), Spanish Society of Vascular and Interventional Radiology (SERVEI), Spanish Society of Laboratory Medicine (SEQC(ML)), Spanish Society of Anatomic-Pathology, Spanish Association of Surgeons (AEC).

Highlights

  • Following a positive screening test, no further studies are needed for diagnosis of PA if a plasma aldosterone concentration (PAC) > 20 ng/dL and a low circulating direct renin or plasma renin activity (PRA) are detected in a patient with spontaneous hypokalemia.

  • In all other patients, one (or more) of four different tests is (are) currently recommended: the fludrocortisone suppression test, the oral salt loading test, the intravenous saline test, and/or the captopril challenge test.

  • In all cases, hypokalemia must be corrected prior to testing.

  • Interfering medication must be progressively withdrawn before testing, while introducing alpha-1 adrenergic blockers, long-acting non-dihydropyridine calcium antagonists, and/or hydralazine as needed for control of hypertension.

  • All but the captopril challenge test run the risk of inducing hypokalemia, fluid overload, and a worsening of hypertension.

  • In the case of borderline results, the initial test employed can be repeated, or a second test performed. Patients with both a negative saline infusion and captopril challenge test appear to be at a low risk for harboring unilateral disease, whereas those positive for both are more likely to exhibit unilateral aldosterone secretion than when tests render conflicting results.

  • Patients showing a positive screening aldosterone to renin ratio (ARR) with normal/high PAC and a low renin/PRA, yet with negative diagnostic testing, presenting mild hyperaldosteronism, can benefit from targeted therapy of hypertension with mineralocorticoid receptor antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.D. Stanaway, A. Afshin, E. Gakidou, S.S. Lim, D. Abate, K.H. Abate et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Stu. Lancet 392, 1923–1994 (2018). https://doi.org/10.1016/S0140-6736(18)32225-6

    Article  Google Scholar 

  2. A.V. Chobanian, G.L. Bakris, H.R. Black, W.C. Cushman, L.A. Green, J.L. Izzo et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 289, 2560–2572 (2003). https://doi.org/10.1001/jama.289.19.2560

    Article  CAS  PubMed  Google Scholar 

  3. P.M. Kearney, M. Whelton, K. Reynolds, P. Muntner, P.K. Whelton, J. He, Global burden of hypertension: analysis of worldwide data. Lancet 365, 217–223 (2005). https://doi.org/10.1016/S0140-6736(05)17741-1

    Article  PubMed  Google Scholar 

  4. E. Menéndez, E. Delgado, F. Fernández-Vega, M.A. Prieto, E. Bordiú, A. Calle, et al. Prevalence, diagnosis, treatment, and control of hypertension in Spain. Results of the Di@bet.es Study. Rev. Española Cardiol. English Ed 69, 572–578 (2016). https://doi.org/10.1016/j.rec.2015.11.034

  5. T. Unger, C. Borghi, F. Charchar, N.A. Khan, N.R. Poulter, D. Prabhakaran et al. 2020 International Society of Hypertension global hypertension practice guidelines. J. Hypertens. 38, 982–1004 (2020). https://doi.org/10.1097/HJH.0000000000002453

    Article  CAS  PubMed  Google Scholar 

  6. S.E. Kjeldsen, K. Narkiewicz, M. Burnier, S. Oparil, 2018 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension. Taylor Francis Ltd 27, 313 (2018). https://doi.org/10.1080/08037051.2018.1530564

    Article  Google Scholar 

  7. P.K. Whelton, R.M. Carey, W.S. Aronow, D.E. Casey, K.J. Collins, C. Dennison Himmelfarb et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Pr. Hypertens. (Dallas, Tex. 1979) 71, e13–e115 (2018). https://doi.org/10.1161/HYP.0000000000000065

    Article  CAS  Google Scholar 

  8. S. Monticone, F. D’Ascenzo, C. Moretti, T.A. Williams, F. Veglio, F. Gaita et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 6, 41–50 (2018). https://doi.org/10.1016/S2213-8587(17)30319-4

    Article  CAS  PubMed  Google Scholar 

  9. Y.K. Tan, Y.H. Kwan, D.C.L. Teo, M. Velema, J. Deinum, P.T. Tan et al. Improvement in quality of life and psychological symptoms after treatment for primary aldosteronism: Asian Cohort Study. Endocr. Connect 10, 834–844 (2021). https://doi.org/10.1530/EC-21-0125

    Article  PubMed  PubMed Central  Google Scholar 

  10. F. Buffolo, G. Cavaglià, J. Burrello, M. Amongero, M. Tetti, A. Pecori et al. Quality of life in primary aldosteronism: A prospective observational study. Eur. J. Clin. Invest 51, e13419 (2021). https://doi.org/10.1111/eci.13419

    Article  CAS  PubMed  Google Scholar 

  11. C.C. Lubitz, K.P. Economopoulos, S. Sy, C. Johanson, H.E. Kunzel, M. Reincke et al. Cost-effectiveness of screening for primary aldosteronism and subtype diagnosis in the resistant hypertensive patients. Circ. Cardiovasc Qual. Outcomes 8, 621–630 (2015). https://doi.org/10.1161/CIRCOUTCOMES.115.002002

    Article  PubMed  PubMed Central  Google Scholar 

  12. M. Sato, R. Morimoto, K. Seiji, Y. Iwakura, Y. Ono, M. Kudo et al. Cost-effectiveness analysis of the diagnosis and treatment of primary aldosteronism in Japan. Horm. Metab. Res. 47, 826–832 (2015). https://doi.org/10.1055/s-0035-1559645

    Article  CAS  PubMed  Google Scholar 

  13. J.W. Funder, R.M. Carey, F. Mantero, M.H. Murad, M. Reincke, H. Shibata et al. The management of primary aldosteronism: Case detection, diagnosis, and treatment: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 101, 1889–1916 (2016). https://doi.org/10.1210/jc.2015-4061

    Article  CAS  PubMed  Google Scholar 

  14. G.P. Rossi, V. Bisogni, A.V. Bacca, A. Belfiore, M. Cesari, A. Concistrè et al. The 2020 Italian Society of Arterial Hypertension (SIIA) practical guidelines for the management of primary aldosteronism. Int J. Cardiol. Hypertens. 5, 100029 (2020). https://doi.org/10.1016/j.ijchy.2020.100029

    Article  PubMed  PubMed Central  Google Scholar 

  15. P. Mulatero, S. Monticone, J. Deinum, L. Amar, A. Prejbisz, M.C. Zennaro et al. Genetics, prevalence, screening and confirmation of primary aldosteronism: a position statement and consensus of the Working Group on Endocrine Hypertension of The European Society of Hypertension. J. Hypertens. 38, 1919–1928 (2020). https://doi.org/10.1097/HJH.0000000000002510

    Article  CAS  PubMed  Google Scholar 

  16. F. Buffolo, S. Monticone, J. Burrello, M. Tetti, F. Veglio, T. Williams et al. Is primary aldosteronism still largely unrecognized? Horm. Metab. Res 49, 908–914 (2017). https://doi.org/10.1055/s-0043-119755

    Article  CAS  PubMed  Google Scholar 

  17. S.C. Käyser, J. Deinum, W.J. de Grauw, B.W. Schalk, H.J. Bor, J.W. Lenders et al. Prevalence of primary aldosteronism in primary care: a cross-sectional study. Br. J. Gen. Pr. 68, e114–e122 (2018). https://doi.org/10.3399/bjgp18X694589

    Article  Google Scholar 

  18. L. Handgriff, M. Reincke, Primärer Hyperaldosteronismus – warum diagnostizieren wir immer noch so wenige Patienten? Dtsch Medizinische Wochenschr. 145, 716–721 (2020). https://doi.org/10.1055/a-0958-0068

    Article  Google Scholar 

  19. P. Mulatero, S. Monticone, J. Burrello, F. Veglio, T.A. Williams, J. Funder, Guidelines for primary aldosteronism: uptake by primary care physicians in Europe. J. Hypertens. 34, 2253–2257 (2016). https://doi.org/10.1097/HJH.0000000000001088

    Article  CAS  PubMed  Google Scholar 

  20. B.C. Ruhle, M.G. White, S. Alsafran, E.L. Kaplan, P. Angelos, R.H. Grogan, Keeping primary aldosteronism in mind: Deficiencies in screening at-risk hypertensives. Surgery 165, 221–227 (2019). https://doi.org/10.1016/j.surg.2018.05.085

    Article  PubMed  Google Scholar 

  21. P. Parra Ramírez, P. Martín Rojas-Marcos, M. Cuesta Hernández, J.G. Ruiz-Sánchez, C. Lamas Oliveira, F.A. Hanzu, et al. Primera encuesta sobre el diagnóstico y tratamiento del hiperaldosteronismo primario por especialistas españoles en Endocrinología y Nutrición. Endocrinol Diabetes y Nutr. (2022). https://doi.org/10.1016/J.ENDINU.2022.01.008

  22. AGREE Collaboration—AGREE Enterprise website n.d. https://www.agreetrust.org/login/?redirect_to=https%3A%2F%2Fwww.agreetrust.org%2Fmy-agree%2F (accessed September 19, 2022).

  23. S.C. Käyser, T. Dekkers, H.J. Groenewoud, G.J. Van Der Wilt, J. Carel Bakx, M.C. Van Der Wel et al. Study heterogeneity and estimation of prevalence of primary aldosteronism: A systematic review and meta-regression analysis. J. Clin. Endocrinol. Metab. 101, 2826–2835 (2016). https://doi.org/10.1210/jc.2016-1472

    Article  CAS  PubMed  Google Scholar 

  24. S. Monticone, J. Burrello, D. Tizzani, C. Bertello, A. Viola, F. Buffolo et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J. Am. Coll. Cardiol. 69, 1811–1820 (2017). https://doi.org/10.1016/j.jacc.2017.01.052

    Article  PubMed  Google Scholar 

  25. J.M. Brown, M. Siddiqui, D.A. Calhoun, R.M. Carey, P.N. Hopkins, G.H. Williams et al. The unrecognized prevalence of primary aldosteronism. Ann. Intern Med 173, 10–20 (2020). https://doi.org/10.7326/M20-0065

    Article  PubMed  PubMed Central  Google Scholar 

  26. M. Reincke, I. Bancos, P. Mulatero, U.I. Scholl, M. Stowasser, T.A. Williams, Diagnosis and treatment of primary aldosteronism. Lancet Diabetes Endocrinol. 9, 876–892 (2021). https://doi.org/10.1016/S2213-8587(21)00210-2

    Article  PubMed  Google Scholar 

  27. J.M. Brown, M. Siddiqui, D.A. Calhoun, R.M. Carey, P.N. Hopkins, G.H. Williams et al. The unrecognized prevalence of primary aldosteronism a cross-sectional study. Ann. Intern Med 173, 10–20 (2020). https://doi.org/10.7326/M20-0065

    Article  PubMed  PubMed Central  Google Scholar 

  28. A. Markou, T. Pappa, G. Kaltsas, A. Gouli, K. Mitsakis, P. Tsounas et al. Evidence of primary aldosteronism in a predominantly female cohort of normotensive individuals: A very high odds ratio for progression into arterial hypertension. J. Clin. Endocrinol. Metab. 98, 1409–1416 (2013). https://doi.org/10.1210/jc.2012-3353

    Article  CAS  PubMed  Google Scholar 

  29. Y. Ito, R. Takeda, Y. Takeda, Subclinical primary aldosteronism. Best. Pr. Res Clin. Endocrinol. Metab. 26, 485–495 (2012). https://doi.org/10.1016/j.beem.2011.11.006

    Article  CAS  Google Scholar 

  30. C. Newton-Cheh, C.-Y. Guo, P. Gona, M.G. Larson, E.J. Benjamin, T.J. Wang et al. Clinical and genetic correlates of aldosterone-to-renin ratio and relations to blood pressure in a community sample. Hypertens. (Dallas, Tex. 1979) 49, 846–856 (2007). https://doi.org/10.1161/01.HYP.0000258554.87444.91

    Article  CAS  Google Scholar 

  31. J.M. Brown, C. Robinson-Cohen, M.A. Luque-Fernandez, M.A. Allison, R. Baudrand, J.H. Ix et al. The spectrum of subclinical primary aldosteronism and incident hypertension: a cohort study. Ann. Intern Med 167, 630–641 (2017). https://doi.org/10.7326/M17-0882

    Article  PubMed  PubMed Central  Google Scholar 

  32. R. Baudrand, F.J. Guarda, C. Fardella, G. Hundemer, J. Brown, G. Williams et al. Continuum of renin-independent aldosteronism in normotension. Hypertension 69, 950–956 (2017). https://doi.org/10.1161/HYPERTENSIONAHA.116.08952

    Article  CAS  PubMed  Google Scholar 

  33. E.V. Adlin, Subclinical primary aldosteronism. Ann. Intern Med 167, 673–674 (2017). https://doi.org/10.7326/M17-2237

    Article  PubMed  Google Scholar 

  34. J.G. Ruiz-Sánchez, M. Pazos Guerra, D. Meneses, I. Runkle, Primary hyperaldosteronism: when to suspect it and how to confirm its diagnosis. Endocrines 3, 29–42 (2022). https://doi.org/10.3390/endocrines3010003

    Article  CAS  Google Scholar 

  35. G.P. Rossi, G. Bernini, C. Caliumi, G. Desideri, B. Fabris, C. Ferri et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J. Am. Coll. Cardiol. 48, 2293–2300 (2006). https://doi.org/10.1016/j.jacc.2006.07.059

    Article  CAS  PubMed  Google Scholar 

  36. D.A. Calhoun, M.K. Nishizaka, M.A. Zaman, R.B. Thakkar, P. Weissmann, Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension 40, 892–896 (2002). https://doi.org/10.1161/01.HYP.0000040261.30455.B6

    Article  CAS  PubMed  Google Scholar 

  37. N. Voulgaris, E. Tyfoxylou, S. Vlachou, E. Kyriazi, C. Gravvanis, C. Kapsali et al. Prevalence of primary aldosteronism across the stages of hypertension based on a new combined overnight test. Horm. Metab. Res 53, 461–469 (2021). https://doi.org/10.1055/a-1507-5226

    Article  CAS  PubMed  Google Scholar 

  38. J. Burrello, S. Monticone, I. Losano, G. Cavaglià, F. Buffolo, M. Tetti et al. Prevalence of hypokalemia and primary aldosteronism in 5100 patients referred to a tertiary hypertension unit. Hypertension 75, 1025–1033 (2020). https://doi.org/10.1161/HYPERTENSIONAHA.119.14063

    Article  CAS  PubMed  Google Scholar 

  39. S. Moradi, M. Shafiepour, A. Amirbaigloo, A woman with normotensive primary hyperaldosteronism. Acta Med Iran. 54, 156–158 (2016)

    PubMed  Google Scholar 

  40. Y.-C. Huang, M.-H. Tsai, Y.-W. Fang, M.-L. Tu, Normotensive hypokalemic primary hyperaldosteronism mimicking clinical features of anorexia nervosa in a young patient: A case report. Med. (Baltim.) 99, e20826 (2020). https://doi.org/10.1097/MD.0000000000020826

    Article  Google Scholar 

  41. I. Kostoglou-Athanassiou, L. Athanassiou, P. Spyropoulos, E. Xanthakou, A. Fortis, T. Kalogirou et al. Primary hyperaldosteronism. A clinical profile of the disease without arterial hypertension. Endocr. Abstr. 73, 68 (2021). https://doi.org/10.1530/endoabs.73.AEP68

    Article  Google Scholar 

  42. Z. Meng, Z. Dai, K. Huang, C. Xu, Y.-G. Zhang, H. Zheng et al. Long-term mortality for patients of primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Front Endocrinol. (Lausanne) 11, 121 (2020). https://doi.org/10.3389/fendo.2020.00121

    Article  PubMed  Google Scholar 

  43. G.L. Hundemer, G.C. Curhan, N. Yozamp, M. Wang, A. Vaidya, Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. Lancet Diabetes Endocrinol. 6, 51–59 (2018). https://doi.org/10.1016/S2213-8587(17)30367-4

    Article  PubMed  Google Scholar 

  44. Y. Jing, K. Liao, R. Li, S. Yang, Y. Song, W. He et al. Cardiovascular events and all-cause mortality in surgically or medically treated primary aldosteronism: A Meta-analysis. J. Renin-Angiotensin-Aldosterone Syst. 22, 4703203211003781 (2021). https://doi.org/10.1177/14703203211003781

    Article  CAS  Google Scholar 

  45. P. Milliez, X. Girerd, P.F. Plouin, J. Blacher, M.E. Safar, J.J. Mourad et al. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J. Am. Coll. Cardiol. 45, 1243–1248 (2005). https://doi.org/10.1016/j.jacc.2005.01.015

    Article  CAS  PubMed  Google Scholar 

  46. M. Stowasser, J. Sharman, R. Leano, R.D. Gordon, G. Ward, D. Cowley et al. Evidence for abnormal left ventricular structure and function in normotensive individuals with familial hyperaldosteronism type I. J. Clin. Endocrinol. Metab. 90, 5070–5076 (2005). https://doi.org/10.1210/jc.2005-0681

    Article  CAS  PubMed  Google Scholar 

  47. M. Abad-Cardiel, B. Álvarez-Álvarez, L. Luque-Fernandez, C. Fernández, A. Fernández-Cruz, N. Martell-Claros, Hipertensión por hiperaldosteronismo: más lesión cardiaca, mayor riesgo cardiovascular. Rev. Española Cardiol. 66, 47–52 (2013). https://doi.org/10.1016/j.recesp.2012.07.025

    Article  Google Scholar 

  48. P. Mulatero, S. Monticone, C. Bertello, A. Viola, D. Tizzani, A. Iannaccone et al. Long-term cardio- and cerebrovascular events in patients with primary aldosteronism. J. Clin. Endocrinol. Metab. 98, 4826–4833 (2013). https://doi.org/10.1210/jc.2013-2805

    Article  CAS  PubMed  Google Scholar 

  49. X. Lin, M.H.E. Ullah, X. Wu, F. Xu, S.-K. Shan, L.-M. Lei et al. Cerebro-cardiovascular risk, target organ damage, and treatment outcomes in primary aldosteronism. Front Cardiovasc Med 8, 798364 (2021). https://doi.org/10.3389/fcvm.2021.798364

    Article  PubMed  Google Scholar 

  50. B. Vogt, M. Burnier, Aldosterone and cardiovascular risk. Curr. Hypertens. Rep. 11, 450–455 (2009). https://doi.org/10.1007/s11906-009-0076-8

    Article  CAS  PubMed  Google Scholar 

  51. A. Prejbisz, E. Warchoł-Celińska, J. Lenders, A. Januszewicz, Cardiovascular risk in primary hyperaldosteronism. Horm. Metab. Res 47, 973–980 (2015). https://doi.org/10.1055/s-0035-1565124

    Article  CAS  PubMed  Google Scholar 

  52. L. Petramala, P. Pignatelli, R. Carnevale, L. Zinnamosca, C. Marinelli, A. Settevendemmie et al. Oxidative stress in patients affected by primary aldosteronism. J. Hypertens. 32, 2022–2029 (2014). https://doi.org/10.1097/HJH.0000000000000284.

    Article  CAS  PubMed  Google Scholar 

  53. G. Liu, G.-S. Yin, J. Tang, D.-J. Ma, J. Ru, X.-H. Huang, Endothelial dysfunction in patients with primary aldosteronism: a biomarker of target organ damage. J. Hum. Hypertens. 28, 711–715 (2014). https://doi.org/10.1038/jhh.2014.11

    Article  CAS  PubMed  Google Scholar 

  54. A.P. McGraw, J. Bagley, W.-S. Chen, C. Galayda, H. Nickerson, A. Armani et al. Aldosterone increases early atherosclerosis and promotes plaque inflammation through a placental growth factor-dependent mechanism. J. Am. Heart Assoc. 2, e000018 (2013). https://doi.org/10.1161/JAHA.112.000018

    Article  PubMed  PubMed Central  Google Scholar 

  55. G.P. Rossi, M. Cesari, C. Cuspidi, G. Maiolino, M.V. Cicala, V. Bisogni et al. Long-term control of arterial hypertension and regression of left ventricular hypertrophy with treatment of primary aldosteronism. Hypertension 62, 62–69 (2013). https://doi.org/10.1161/HYPERTENSIONAHA.113.01316

    Article  CAS  PubMed  Google Scholar 

  56. C.T. Pan, C.H. Tsai, Z.W. Chen, Y.Y. Chang, V.C. Wu, C.S. Hung et al. Atrial fibrillation in primary aldosteronism. Horm. Metab. Res 52, 357–365 (2020). https://doi.org/10.1055/a-1141-5989

    Article  CAS  PubMed  Google Scholar 

  57. R.S. Vasan, J.C. Evans, M.G. Larson, P.W.F. Wilson, J.B. Meigs, N. Rifai et al. Serum aldosterone and the incidence of hypertension in nonhypertensive persons. N. Engl. J. Med. 351, 33–41 (2004). https://doi.org/10.1056/NEJMoa033263

    Article  CAS  PubMed  Google Scholar 

  58. Y. Yoshida, S. Yoshimura, M. Kinoshita, Y. Ozeki, M. Okamoto, K. Gotoh et al. Oral salt loading test is associated with 24-hour blood pressure and organ damage in primary aldosteronism patients. J. Endocr. Soc. 4, bvaa116 (2020). https://doi.org/10.1210/JENDSO/BVAA116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. J.M. Luther, Effects of aldosterone on insulin sensitivity and secretion. Steroids 91, 54–60 (2014). https://doi.org/10.1016/j.steroids.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  60. C. Bothou, F. Beuschlein, A. Spyroglou, Links between aldosterone excess and metabolic complications: A comprehensive review. Diabetes Metab. 46, 1–7 (2020). https://doi.org/10.1016/j.diabet.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  61. M.N. Pratt-Ubunama, M.K. Nishizaka, R.L. Boedefeld, S.S. Cofield, S.M. Harding, D.A. Calhoun, Plasma aldosterone is related to severity of obstructive sleep apnea in subjects with resistant hypertension. Chest 131, 453–459 (2007). https://doi.org/10.1378/chest.06-1442

    Article  CAS  PubMed  Google Scholar 

  62. A. Di Murro, L. Petramala, D. Cotesta, L. Zinnamosca, E. Crescenzi, C. Marinelli et al. Renin-angiotensin-aldosterone system in patients with sleep apnoea: Prevalence of primary aldosteronism. J. Renin-Angiotensin-Aldosterone Syst. 11, 165–172 (2010). https://doi.org/10.1177/1470320310366581

    Article  PubMed  Google Scholar 

  63. A. Pecori, F. Buffolo, J. Pieroni, V. Forestiero, E. Sconfienza, F. Veglio et al. Primary aldosteronism and obstructive sleep apnea: casual association or pathophysiological link? Horm. Metab. Res 52, 366–372 (2020). https://doi.org/10.1055/a-1133-7255

    Article  CAS  PubMed  Google Scholar 

  64. W. Kawarazaki, T. Fujita, The role of aldosterone in obesity-related hypertension. Am. J. Hypertens. 29, 415–423 (2016). https://doi.org/10.1093/ajh/hpw003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. V.M. Gershuni, D.S. Herman, R.R. Kelz, R.E. Roses, D.L. Cohen, S.O. Trerotola et al. Challenges in obesity and primary aldosteronism: Diagnosis and treatment. Surgery 167, 204–210 (2020). https://doi.org/10.1016/j.surg.2019.03.036

    Article  PubMed  Google Scholar 

  66. Y. Ohno, M. Sone, N. Inagaki, T. Yamasaki, O. Ogawa, Y. Takeda et al. Obesity as a key factor underlying idiopathic hyperaldosteronism. J. Clin. Endocrinol. Metab. 103, 4456–4464 (2018). https://doi.org/10.1210/jc.2018-00866

    Article  PubMed  Google Scholar 

  67. Y. Akehi, T. Yanase, R. Motonaga, H. Umakoshi, M. Tsuiki, Y. Takeda et al. High prevalence of diabetes in patients with primary aldosteronism (PA) associated with subclinical hypercortisolism and prediabetes more prevalent in bilateral than unilateral PA: A large, multicenter cohort study in Japan. Diabetes Care 42, 938–945 (2019). https://doi.org/10.2337/dc18-1293

    Article  CAS  PubMed  Google Scholar 

  68. G. Hanslik, H. Wallaschofski, A. Dietz, A. Riester, M. Reincke, B. Allolio et al. Increased prevalence of diabetes mellitus and the metabolic syndrome in patients with primary aldosteronism of the German Conn’s Registry. Eur. J. Endocrinol. 173, 665–675 (2015). https://doi.org/10.1530/EJE-15-0450

    Article  CAS  PubMed  Google Scholar 

  69. Y. Hu, J. Zhang, W. Liu, X. Su, Determining the prevalence of primary aldosteronism in patients with new-onset type 2 diabetes and hypertension. J. Clin. Endocrinol. Metab. 105, 1079–1085 (2020). https://doi.org/10.1210/clinem/dgz293

    Article  Google Scholar 

  70. E. Rossi, C. Sani, F. Perazzoli, M.C. Casoli, A. Negro, C. Dotti, Alterations of calcium metabolism and of parathyroid function in primary aldosteronism, and their reversal by spironolactone or by surgical removal of aldosterone-producing adenomas. Am. J. Hypertens. 8, 884–893 (1995). https://doi.org/10.1016/0895-7061(95)00182-O

    Article  CAS  PubMed  Google Scholar 

  71. M. Fernández-Argüeso, E. Pascual-Corrales, N. Bengoa Rojano, A. García Cano, L. Jiménez Mendiguchía, M. Araujo-Castro, Higher risk of chronic kidney disease and progressive kidney function impairment in primary aldosteronism than in essential hypertension. Case-control study. Endocrine 73, 439–446 (2021). https://doi.org/10.1007/s12020-021-02704-2

    Article  CAS  PubMed  Google Scholar 

  72. S. Monticone, E. Sconfienza, F. D’Ascenzo, F. Buffolo, F. Satoh, L.A. Sechi et al. Renal damage in primary aldosteronism: A systematic review and meta-analysis. J. Hypertens. 38, 3–12 (2020). https://doi.org/10.1097/HJH.0000000000002216

    Article  CAS  PubMed  Google Scholar 

  73. J. Gerards, D.A. Heinrich, C. Adolf, C. Meisinger, W. Rathmann, L. Sturm et al. Impaired glucose metabolism in primary aldosteronism is associated with cortisol cosecretion. J. Clin. Endocrinol. Metab. 104, 3192–3202 (2019). https://doi.org/10.1210/jc.2019-00299

    Article  PubMed  Google Scholar 

  74. S. Monticone, A. Viola, D. Tizzani, V. Crudo, J. Burrello, M. Galmozzi et al. Primary aldosteronism: who should be screened? Horm. Metab. Res 44, 163–169 (2012). https://doi.org/10.1055/S-0031-1295409

    Article  CAS  PubMed  Google Scholar 

  75. M. Araujo-Castro, P. Parra-Ramírez, Diagnosis of primary hyperaldosteronism. Med. Clin. (Barc) (2021). https://doi.org/10.1016/j.medcli.2021.10.012.

  76. R. Zhang, X. Cai, C. lin, W. Yang, F. Lv, X. Han et al. Primary aldosteronism and obstructive sleep apnea: A meta-analysis of prevalence and metabolic characteristics. Sleep. Med 114, 8–14 (2024). https://doi.org/10.1016/J.SLEEP.2023.12.007

    Article  PubMed  Google Scholar 

  77. M. Araujo-Castro, M. Paja Fano, B. Pla Peris, M. González Boillos, E. Pascual-Corrales, A.M. García-Cano, et al. Autonomous cortisol secretion in patients with primary aldosteronism: prevalence and implications on cardiometabolic profile and on surgical outcomes. Endocr. Connect 12 (2023). https://doi.org/10.1530/EC-23-0043

  78. Z. Guo, M. Poglitsch, B.C. McWhinney, J.P.J. Ungerer, A.H. Ahmed, R.D. Gordon et al. Aldosterone LC-MS/MS assay-specific threshold values in screening and confirmatory testing for primary aldosteronism. J. Clin. Endocrinol. Metab. 103, 3965–3973 (2018). https://doi.org/10.1210/JC.2018-01041

    Article  PubMed  Google Scholar 

  79. M. Stowasser, R.D. Gordon, Primary aldosteronism: changing definitions and new concepts of physiology and pathophysiology both inside and outside the kidney. Physiol. Rev. 96, 1327–1384 (2016). https://doi.org/10.1152/PHYSREV.00026.2015

    Article  CAS  PubMed  Google Scholar 

  80. W.F. Young, Diagnosis and treatment of primary aldosteronism: practical clinical perspectives. J. Intern Med. 285, 126–148 (2019). https://doi.org/10.1111/JOIM.12831

    Article  PubMed  Google Scholar 

  81. S.M. Gibbons, H.P. Field, A. Fairhurst, A. Fleming, C. Ford, E.L. Williams et al. Clinical evaluation of assays for plasma renin activity and aldosterone measurement by liquid chromatography-tandem mass spectrometry. J. Appl Lab Med 6, 668–678 (2021). https://doi.org/10.1093/JALM/JFAA177

    Article  PubMed  Google Scholar 

  82. M. Stowasser, A. Ahmed, Z. Guo, M. Wolley, J. Ungerer, B. Mcwhinney et al. Can screening and confirmatory testing in the management of patients with primary aldosteronism be improved? (2017).

  83. J. Burrello, S. Monticone, F. Buffolo, M. Lucchiari, M. Tetti, F. Rabbia et al. Diagnostic accuracy of aldosterone and renin measurement by chemiluminescent immunoassay and radioimmunoassay in primary aldosteronism. J. Hypertens. 34, 920–927 (2016). https://doi.org/10.1097/HJH.0000000000000880

    Article  CAS  PubMed  Google Scholar 

  84. G.P. Rossi, M. Barisa, A. Belfiore, G. Desideri, C. Ferri, C. Letizia et al. The aldosterone-renin ratio based on the plasma renin activity and the direct renin assay for diagnosing aldosterone-producing adenoma. J. Hypertens. 28, 1892–1899 (2010). https://doi.org/10.1097/HJH.0B013E32833D2192

    Article  CAS  PubMed  Google Scholar 

  85. C. Douillard, P. Houillier, J. Nussberger, X. Girerd, SFE/SFHTA/AFCE consensus on primary aldosteronism, part 2: first diagnostic steps. Ann. Endocrinol. (Paris) 77, 192–201 (2016). https://doi.org/10.1016/J.ANDO.2016.02.003

    Article  PubMed  Google Scholar 

  86. T. Nishikawa, M. Omura, F. Satoh, H. Shibata, K. Takahashi, N. Tamura et al. Guidelines for the diagnosis and treatment of primary aldosteronism-the Japan Endocrine Society 2009. Endocr. J. 58, 711–721 (2011). https://doi.org/10.1507/ENDOCRJ.EJ11-0133

    Article  CAS  PubMed  Google Scholar 

  87. G.P. Rossi, G. Ceolotto, G. Rossitto, T.M. Seccia, G. Maiolino, C. Berton et al. Prospective validation of an automated chemiluminescence-based assay of renin and aldosterone for the work-up of arterial hypertension. Clin. Chem. Lab Med. 54, 1441–1450 (2016). https://doi.org/10.1515/CCLM-2015-1094

    Article  CAS  PubMed  Google Scholar 

  88. S. Baron, L. Amar, A.L. Faucon, A. Blanchard, L. Baffalie, C. Faucard et al. Criteria for diagnosing primary aldosteronism on the basis of liquid chromatography-tandem mass spectrometry determinations of plasma aldosterone concentration. J. Hypertens. 36, 1592–1601 (2018). https://doi.org/10.1097/HJH.0000000000001735

    Article  CAS  PubMed  Google Scholar 

  89. M. Stowasser, A.H. Ahmed, E. Pimenta, P.J. Taylor, R.D. Gordon, E. Hypertension et al. Factors affecting the aldosterone / renin ratio. Horm. Metab. Res 44, 170–176 (2012)

    Article  CAS  PubMed  Google Scholar 

  90. D.J. Campbell, J. Nussberger, M. Stowasser, A.H.J. Danser, A. Morganti, E. Frandsen et al. Activity assays and immunoassays for plasma Renin and prorenin: information provided and precautions necessary for accurate measurement. Clin. Chem. 55, 867–877 (2009). https://doi.org/10.1373/CLINCHEM.2008.118000

    Article  CAS  PubMed  Google Scholar 

  91. F.H. Messerli, Doxazosin and congestive heart failure. J. Am. Coll. Cardiol. 38, 1295–1296 (2001). https://doi.org/10.1016/S0735-1097(01)01534-0

    Article  CAS  PubMed  Google Scholar 

  92. G. Cholack, J. Garfein, R. Krallman, D. Montgomery, E. Kline-Rogers, M. Rubenfire et al. Trends in calcium channel blocker use in patients with heart failure with reduced ejection fraction and comorbid atrial fibrillation. Am. J. Med 134, 1413–1418.e1 (2021). https://doi.org/10.1016/J.AMJMED.2021.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. A.H. Ahmed, R.D. Gordon, P.J. Taylor, G. Ward, E. Pimenta, M. Stowasser, Effect of contraceptives on aldosterone/renin ratio may vary according to the components of contraceptive, renin assay method, and possibly route of administration. J. Clin. Endocrinol. Metab. 96, 1797–1804 (2011). https://doi.org/10.1210/jc.2010-2918

    Article  CAS  PubMed  Google Scholar 

  94. A.H. Ahmed, M. Calvird, R.D. Gordon, P.J. Taylor, G. Ward, E. Pimenta et al. Effects of two selective serotonin reuptake inhibitor antidepressants, sertraline and escitalopram, on aldosterone/renin ratio in normotensive depressed male patients. J. Clin. Endocrinol. Metab. 96, 1039–1045 (2011). https://doi.org/10.1210/jc.2010-2603

    Article  CAS  PubMed  Google Scholar 

  95. D.Z.I. Cherney, B.A. Perkins, N. Soleymanlou, M. Maione, V. Lai, A. Lee et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129, 587–597 (2014). https://doi.org/10.1161/CIRCULATIONAHA.113.005081

    Article  CAS  PubMed  Google Scholar 

  96. P. Parra Ramírez, P.M. Rojas-Marcos, M. Paja Fano, M. González Boillos, E. Pascual-Corrales, A. García-Cano et al. Differences in the presentation and evolution of primary aldosteronism in elderly (≥65 years). Endocr. Connect 11, e220169 (2022). https://doi.org/10.1530/EC-22-0169

    Article  PubMed  PubMed Central  Google Scholar 

  97. W. Tu, G.J. Eckert, T.S. Hannon, H. Liu, L.M. Pratt, M.A. Wagner et al. Racial differences in sensitivity of blood pressure to aldosterone. Hypertension 63, 1212 (2014). https://doi.org/10.1161/HYPERTENSIONAHA.113.02989

    Article  CAS  PubMed  Google Scholar 

  98. Y. Ohno, M. Sone, N. Inagaki, Y. Takeda, I. Kurihara, M. Tsuiki et al. Latent autonomous cortisol secretion from apparently nonfunctioning adrenal tumor in nonlateralized hyperaldosteronism. J. Clin. Endocrinol. Metab. 104, 4382–4389 (2019). https://doi.org/10.1210/JC.2018-02790

    Article  PubMed  Google Scholar 

  99. G.P. Rossi, G. Maiolino, A. Flego, A. Belfiore, G. Bernini, B. Fabris et al. Adrenalectomy lowers incident atrial fibrillation in primary aldosteronism patients at long term. Hypertens. (Dallas, Tex. 1979) 71, 585–591 (2018). https://doi.org/10.1161/HYPERTENSIONAHA.117.10596

    Article  CAS  Google Scholar 

  100. M. Stowasser, R.D. Gordon, J.C. Rutherford, N.Z. Nikwan, N. Daunt, G.J. Slater, Diagnosis and management of primary aldosteronism. J. Renin Angiotensin Aldosterone Syst. 2 (2001) https://doi.org/10.3317/jraas.2001.022

  101. G. Opocher, S. Rocco, M. Cimolato, B. Vianello, G. Arnaldi, F. Mantero, Angiotensin II receptors in cortical and medullary adrenal tumors. J. Clin. Endocrinol. Metab. 82, 865–869 (1997). https://doi.org/10.1210/JCEM.82.3.3794

    Article  CAS  PubMed  Google Scholar 

  102. T.J. Tunny, S.A. Klemm, M. Stowasser, R.D. Gordon, Angiotensin-responsive aldosterone-producing adenomas: postoperative disappearance of aldosterone response to angiotensin. Clin. Exp. Pharm. Physiol. 20, 306–309 (1993). https://doi.org/10.1111/J.1440-1681.1993.TB01690.X

    Article  CAS  Google Scholar 

  103. T. Saruta, T. Okuno, T. Eguchi, R. Nakamura, I. Saito, K. Kondo et al. Responses of aldosterone-producing adenomas to ACTH and angiotensins. Acta Endocrinol. (Copenh) 92, 702–709 (1979). https://doi.org/10.1530/ACTA.0.0920702

    Article  CAS  PubMed  Google Scholar 

  104. E.V. Adlin, L.E. Braitman, R.S. Vasan, Bimodal aldosterone distribution in low-renin hypertension. Am. J. Hypertens. 26, 1076–1085 (2013). https://doi.org/10.1093/AJH/HPT091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. J.G. Ruiz-Sánchez, A.L. Calle-Pascual, M.Á. Rubio-Herrera, M.P. De Miguel Novoa, E. Gómez-Hoyos, I. Runkle, Clinical manifestations and associated factors in acquired hypoaldosteronism in endocrinological practice. Front Endocrinol. (Lausanne) 13, 990148 (2022). https://doi.org/10.3389/FENDO.2022.990148

    Article  PubMed  Google Scholar 

  106. J.M.C. Connell, S.M. MacKenzie, E.M. Freel, R. Fraser, E. Davies, A lifetime of aldosterone excess: long-term consequences of altered regulation of aldosterone production for cardiovascular function. Endocr. Rev. 29, 133–154 (2008). https://doi.org/10.1210/ER.2007-0030

    Article  CAS  PubMed  Google Scholar 

  107. D.F. Lyons, D.C. Kem, R.D. Brown, C.S. Hanson, M.L. Carollo, Single dose captopril as a diagnostic test for primary aldosteronism. J. Clin. Endocrinol. Metab. 57, 892–896 (1983). https://doi.org/10.1210/JCEM-57-5-892

    Article  CAS  PubMed  Google Scholar 

  108. A. Vecchiola, C.A. Fuentes, E.R. Barros, A. Martínez-Aguayo, H. García, F. Allende et al. The aldosterone/renin ratio predicts cardiometabolic disorders in subjects without classic primary aldosteronism. Am. J. Hypertens. 32, 468–475 (2019). https://doi.org/10.1093/AJH/HPZ023

    Article  CAS  PubMed  Google Scholar 

  109. S.J. Duffy, E.S. Biegelsen, R.T. Eberhardt, D.F. Kahn, B.A. Kingwell, J.A. Vita, Low-renin hypertension with relative aldosterone excess is associated with impaired NO-mediated vasodilation. Hypertens. (Dallas, Tex. 1979) 46, 707–713 (2005). https://doi.org/10.1161/01.HYP.0000184231.84465.62

    Article  CAS  Google Scholar 

  110. K.T. Weber, S.K. Bhattacharya, M.S. Gandhi, G. Kamalov, R.A. Ahokas, Y. Sun et al. Myocardial remodeling in low-renin hypertension: molecular pathways to cellular injury in relative aldosteronism. Curr. Hypertens. Rep. 11, 412–420 (2009). https://doi.org/10.1007/S11906-009-0071-0

    Article  PubMed  PubMed Central  Google Scholar 

  111. A. Mahmud, M. Mahgoub, M. Hall, J. Feely, Does aldosterone-to-renin ratio predict the antihypertensive effect of the aldosterone antagonist spironolactone? Am. J. Hypertens. 18, 1631–1635 (2005). https://doi.org/10.1016/J.AMJHYPER.2005.06.010

    Article  CAS  PubMed  Google Scholar 

  112. P.O. Lim, R.T. Jung, T.M. MacDonald, Raised aldosterone to renin ratio predicts antihypertensive efficacy of spironolactone: a prospective cohort follow-up study. Br. J. Clin. Pharm. 48, 756–760 (1999). https://doi.org/10.1046/J.1365-2125.1999.00070.X

    Article  CAS  Google Scholar 

  113. M.H. Weinberger, W.B. White, L.M. Ruilope, T.M. MacDonald, R.C. Davidson, B. Roniker et al. Effects of eplerenone versus losartan in patients with low-renin hypertension. Am. Heart J. 150, 426–433 (2005). https://doi.org/10.1016/J.AHJ.2004.12.005

    Article  CAS  PubMed  Google Scholar 

  114. Y. Ori, A. Chagnac, A. Korzets, B. Zingerman, M. Herman-Edelstein, M. Bergman et al. Regression of left ventricular hypertrophy in patients with primary aldosteronism/low-renin hypertension on low-dose spironolactone. Nephrol. Dial. Transpl. 28, 1787–1793 (2013). https://doi.org/10.1093/ndt/gfs587

    Article  CAS  Google Scholar 

  115. M. Stowasser, R.D. Gordon, Primary aldosteronism: Learning from the study of familial varieties. J. Hypertens. 18, 1165–1176 (2000). https://doi.org/10.1097/00004872-200018090-00002

    Article  CAS  PubMed  Google Scholar 

  116. H. Shibata, H. Itoh, Mineralocorticoid receptor-associated hypertension and its organ damage: clinical relevance for resistant hypertension. Am. J. Hypertens. 25, 514–523 (2012). https://doi.org/10.1038/AJH.2011.245

    Article  CAS  PubMed  Google Scholar 

  117. A. Vaidya, R.M. Carey, Evolution of the primary aldosteronism syndrome: updating the approach. J. Clin. Endocrinol. Metab. 105, 3771–3783 (2020). https://doi.org/10.1210/CLINEM/DGAA606

    Article  PubMed  PubMed Central  Google Scholar 

  118. H. Umakoshi, M. Naruse, N. Wada, T. Ichijo, K. Kamemura, Y. Matsuda et al. Adrenal venous sampling in patients with positive screening but negative confirmatory testing for primary aldosteronism. Hypertens. (Dallas, Tex. 1979) 67, 1014–1019 (2016). https://doi.org/10.1161/HYPERTENSIONAHA.115.06607

    Article  CAS  Google Scholar 

  119. N. Matsunoshita, K. Nozu, A. Shono, Y. Nozu, X.J. Fu, N. Morisada et al. Differential diagnosis of Bartter syndrome, Gitelman syndrome, and pseudo-Bartter/Gitelman syndrome based on clinical characteristics. Genet Med. 18, 180–188 (2016). https://doi.org/10.1038/GIM.2015.56

    Article  CAS  PubMed  Google Scholar 

  120. L.K. Nieman, B.M.K.K. Biller, J.W. Findling, J. Newell-Price, M.O. Savage, P.M. Stewart et al. The Diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 93, 1526–1540 (2008). https://doi.org/10.1210/jc.2008-0125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. M. Tetti, S. Monticone, J. Burrello, P. Matarazzo, F. Veglio, B. Pasini et al. Liddle syndrome: review of the literature and description of a new case. Int. J. Mol. Sci. 19, 812 (2018). https://doi.org/10.3390/IJMS19030812

    Article  PubMed  PubMed Central  Google Scholar 

  122. M. Yau, S. Haider, A. Khattab, C. Ling, M. Mathew, S. Zaidi et al. Clinical, genetic, and structural basis of apparent mineralocorticoid excess due to 11β-hydroxysteroid dehydrogenase type 2 deficiency. Proc. Natl. Acad. Sci. USA 114, E11248–E11256 (2017). https://doi.org/10.1073/PNAS.1716621115

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. D. El-Maouche, W. Arlt, D.P. Merke, Congenital adrenal hyperplasia. Lancet (Lond., Engl.) 390, 2194–2210 (2017). https://doi.org/10.1016/S0140-6736(17)31431-9

    Article  CAS  Google Scholar 

  124. F.H. Wilson, S. Disse-Nicodème, K.A. Choate, K. Ishikawa, C. Nelson-Williams, I. Desitter et al. Human hypertension caused by mutations in WNK kinases. Science 293, 1107–1112 (2001). https://doi.org/10.1126/SCIENCE.1062844

    Article  CAS  PubMed  Google Scholar 

  125. E. Charmandari, T. Kino, G.P. Chrousos, Primary generalized familial and sporadic glucocorticoid resistance (Chrousos syndrome) and hypersensitivity. Endocr. Dev. 24, 67–85 (2013). https://doi.org/10.1159/000342505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. T.A. Williams, C.E. Gomez-Sanchez, W.E. Rainey, T.J. Giordano, A.K. Lam, A. Marker et al. International histopathology consensus for unilateral primary aldosteronism. J. Clin. Endocrinol. Metab. 106, 42–54 (2021). https://doi.org/10.1210/clinem/dgaa484

    Article  PubMed  Google Scholar 

  127. D. Sam, G.A. Kline, B. So, S.J. Przybojewski, A.A. Leung, Unilateral disease is common in patients with primary aldosteronism without adrenal nodules. Can. J. Cardiol. 37, 269–275 (2021). https://doi.org/10.1016/j.cjca.2020.05.013

    Article  PubMed  Google Scholar 

  128. S.M. Patel, R.K. Lingam, T.I. Beaconsfield, T.L. Tran, B. Brown, Role of radiology in the management of primary aldosteronism. Radiographics 27, 1145–1157 (2007). https://doi.org/10.1148/RG.274065150

    Article  PubMed  Google Scholar 

  129. R.K. Lingam, S.A. Sohaib, A.G. Rockall, A.M. Isidori, S. Chew, J.P. Monson et al. Diagnostic performance of CT versus MR in detecting aldosterone-producing adenoma in primary hyperaldosteronism (Conn’s syndrome). Eur. Radio. 14, 1787–1792 (2004). https://doi.org/10.1007/S00330-004-2308-2

    Article  CAS  Google Scholar 

  130. S.A. Sohaib, P.D. Peppercorn, C. Allan, J.P. Monson, A.B. Grossman, G.M. Besser et al. Primary hyperaldosteronism (Conn syndrome): MR imaging findings. Radiology 214, 527–531 (2000). https://doi.org/10.1148/RADIOLOGY.214.2.R00FE09527

    Article  CAS  PubMed  Google Scholar 

  131. R.K. Lingam, S.A. Sohaib, I. Vlahos, A.G. Rockall, A.M. Isidori, J.P. Monson et al. CT of primary hyperaldosteronism (Conn’s syndrome): the value of measuring the adrenal gland. AJR Am. J. Roentgenol. 181, 843–849 (2003). https://doi.org/10.2214/AJR.181.3.1810843

    Article  CAS  PubMed  Google Scholar 

  132. S. Powlson, M. Gurnell, M.J. Brown, Nuclear imaging in the diagnosis of primary aldosteronism. Curr. Opin. Endocrinol. Diabetes Obes.; 22, 150–156 (2015). https://doi.org/10.1097/MED.0000000000000148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. G.P. Rossi, R.J. Auchus, M. Brown, J.W.M. Lenders, M. Naruse, P.F. Plouin et al. An expert consensus statement on use of adrenal vein sampling for the subtyping of primary aldosteronism. Hypertension 63, 151–160 (2014). https://doi.org/10.1161/HYPERTENSIONAHA.113.02097

    Article  CAS  PubMed  Google Scholar 

  134. J.W. Funder, Primary aldosteronism: clinical lateralization and costs. J. Clin. Endocrinol. Metab. 97, 3450–3452 (2012). https://doi.org/10.1210/JC.2012-3046

    Article  CAS  PubMed  Google Scholar 

  135. M.J.E. Kempers, J.W.M. Lenders, L. Van Outheusden, G.J. Van Der Wilt, L.J.S. Kool, A.R.M.M. Hermus et al. Systematic review: Diagnostic procedures to differentiate unilateral from bilateral adrenal abnormality in primary aldosteronism. Ann. Intern Med. 151, 329–337 (2009). https://doi.org/10.7326/0003-4819-151-5-200909010-00007

    Article  PubMed  Google Scholar 

  136. H. Ota, K. Seiji, M. Kawabata, N. Satani, K. Omata, Y. Ono et al. Dynamic multidetector CT and non-contrast-enhanced MR for right adrenal vein imaging: comparison with catheter venography in adrenal venous sampling. Eur. Radio. 26, 622–630 (2016). https://doi.org/10.1007/S00330-015-3872-3

    Article  Google Scholar 

  137. S. Morita, H. Yamazaki, Y. Sonoyama, Y. Nishina, A. Ichihara, S. Sakai, Successful adrenal venous sampling by non-experts with reference to CT images. Cardiovasc Interv. Radio. 39, 1001–1006 (2016). https://doi.org/10.1007/S00270-016-1335-0

    Article  Google Scholar 

  138. T. Kocjan, M. Jensterle, G. Vidmar, R. Vrckovnik, P. Berden, M. Stankovic, Adrenal vein sampling for primary aldosteronism: a 15-year national referral center experience. Radio. Oncol. 54, 409–418 (2020). https://doi.org/10.2478/RAON-2020-0052

    Article  Google Scholar 

  139. K.B. Quencer, Adrenal vein sampling: technique and protocol, a systematic review. CVIR Endovasc. 4, 38 (2021). https://doi.org/10.1186/s42155-021-00220-y

    Article  PubMed  PubMed Central  Google Scholar 

  140. T.M. Seccia, D. Miotto, M. Battistel, R. Motta, M. Barisa, C. Maniero et al. A stress reaction affects assessment of selectivity of adrenal venous sampling and of lateralization of aldosterone excess in primary aldosteronism. Eur. J. Endocrinol. 166, 869–875 (2012). https://doi.org/10.1530/EJE-11-0972

    Article  CAS  PubMed  Google Scholar 

  141. G.P. Rossi, G. Pitter, P. Bernante, R. Motta, G. Feltrin, D. Miotto, Adrenal vein sampling for primary aldosteronism: the assessment of selectivity and lateralization of aldosterone excess baseline and after adrenocorticotropic hormone (ACTH) stimulation. J. Hypertens. 26, 989–997 (2008). https://doi.org/10.1097/HJH.0B013E3282F9E66A

    Article  CAS  PubMed  Google Scholar 

  142. G. Rossitto, L. Amar, M. Azizi, A. Riester, M. Reincke, C. Degenhart et al. Subtyping of primary aldosteronism in the AVIS-2 study: Assessment of selectivity and lateralization. J. Clin. Endocrinol. Metab. 105, 2042–2052 (2020). https://doi.org/10.1210/clinem/dgz017

    Article  Google Scholar 

  143. E.G. Violari, M. Arici, C.K. Singh, C.M. Caetano, C.S. Georgiades, J. Grady et al. Adrenal vein sampling with and without cosyntropin stimulation for detection of surgically remediable aldosteronism. Endocrinol. Diabetes Metab. 2, e00066 (2019). https://doi.org/10.1002/EDM2.66

    Article  PubMed  PubMed Central  Google Scholar 

  144. O. Vonend, N. Ockenfels, X. Gao, B. Allolio, K. Lang, K. Mai et al. Adrenal venous sampling: Evaluation of the german conn’s registry. Hypertension 57, 990–995 (2011). https://doi.org/10.1161/HYPERTENSIONAHA.110.168484

    Article  CAS  PubMed  Google Scholar 

  145. A.R. Deipolyi, A. Bailin, S. Wicky, S. Alansari, R. Oklu, Adrenal Vein sampling for Conn’s syndrome: diagnosis and clinical outcomes. Diagnostics (Basel, Switz.) 5, 254–271 (2015). https://doi.org/10.3390/DIAGNOSTICS5020254

    Article  CAS  Google Scholar 

  146. T. Dekkers, A. Prejbisz, L.J.S. Kool, H.J.M.M. Groenewoud, M. Velema, W. Spiering et al. Adrenal vein sampling versus CT scan to determine treatment in primary aldosteronism: an outcome-based randomised diagnostic trial. Lancet Diabetes Endocrinol. 4, 739–746 (2016). https://doi.org/10.1016/S2213-8587(16)30100-0

    Article  PubMed  Google Scholar 

  147. J.M. Seo, B.K. Park, S.Y. Park, C.K. Kim, Characterization of lipid-poor adrenal adenoma: Chemical-shift MRI and washout CT. Am. J. Roentgenol. 202, 1043–1050 (2014). https://doi.org/10.2214/AJR.13.11389

    Article  Google Scholar 

  148. M.M. Page, M. Taranto, D. Ramsay, G. van Schie, P. Glendenning, M.J. Gillett et al. Improved technical success and radiation safety of adrenal vein sampling using rapid, semi-quantitative point-of-care cortisol measurement. Ann. Clin. Biochem 55, 588–592 (2018). https://doi.org/10.1177/0004563218760352

    Article  CAS  PubMed  Google Scholar 

  149. G.P. Rossi, G. Rossitto, L. Amar, M. Azizi, A. Riester, M. Reincke et al. Clinical outcomes of 1625 patients with primary aldosteronism subtyped with Adrenal Vein sampling. Hypertension 74, 800–808 (2019). https://doi.org/10.1161/HYPERTENSIONAHA.119.13463

    Article  CAS  PubMed  Google Scholar 

  150. M. Araujo-Castro, M. Paja Fano, M. González Boillos, B. Pla Peris, E. Pascual-Corrales, A.M. García Cano et al. Adrenal venous sampling in primary aldosteronism: Experience of a Spanish multicentric study (Results from the SPAIN-ALDO Register). Endocrine 78, 363–372 (2022). https://doi.org/10.1007/S12020-022-03122-8

    Article  CAS  PubMed  Google Scholar 

  151. J.D. Pasternak, I. Epelboym, N. Seiser, M. Wingo, M. Herman, V. Cowan et al. Diagnostic utility of data from adrenal venous sampling for primary aldosteronism despite failed cannulation of the right adrenal vein. Surgery 159, 267–274 (2016). https://doi.org/10.1016/J.SURG.2015.06.048

    Article  PubMed  Google Scholar 

  152. L. Lin, L. Zhou, Y. Guo, Z. Liu, T. Chen, Z. Liu et al. Can incomplete adrenal venous sampling data be used in predicting the subtype of primary aldosteronism? Ann. Endocrinol. (Paris) 80, 301–307 (2019). https://doi.org/10.1016/J.ANDO.2019.10.001

    Article  PubMed  Google Scholar 

  153. G.P. Rossi, M. Barisa, B. Allolio, R.J. Auchus, L. Amar, D. Cohen et al. The adrenal vein sampling International study (avis) for identifying the major subtypes of primary aldosteronism. J. Clin. Endocrinol. Metab. 97, 1606–1614 (2012). https://doi.org/10.1210/jc.2011-2830

    Article  CAS  PubMed  Google Scholar 

  154. S. Zhong, T. Zhang, M. He, H. Yu, Z. Liu, Z. Li et al. Recent advances in the clinical application of Adrenal Vein sampling. Front Endocrinol. (Lausanne) 13, 797021 (2022). https://doi.org/10.3389/FENDO.2022.797021

    Article  PubMed  Google Scholar 

  155. F. Beuschlein, P. Mulatero, E. Asbach, S. Monticone, C. Catena, L.A. Sechi et al. The SPARTACUS trial: controversies and unresolved issues. Horm. Metab. Res 49, 936–942 (2017). https://doi.org/10.1055/S-0043-120524

    Article  CAS  PubMed  Google Scholar 

  156. M. Naruse, A. Tanabe, K. Yamamoto, H. Rakugi, M. Kometani, T. Yoneda et al. Adrenal venous sampling for subtype diagnosis of primary hyperaldosteronism. Endocrinol. Metab. (Seoul., Korea) 36, 965–973 (2021). https://doi.org/10.3803/ENM.2021.1192

    Article  CAS  Google Scholar 

  157. G. Ceolotto, G. Antonelli, G. Maiolino, M. Cesari, G. Rossitto, V. Bisogni et al. Androstenedione and 17-α-hydroxyprogesterone are better indicators of adrenal vein sampling selectivity than cortisol. Hypertens. (Dallas, Tex. 1979) 70, 342–346 (2017). https://doi.org/10.1161/HYPERTENSIONAHA.117.09415

    Article  CAS  Google Scholar 

  158. T. Dekkers, J. Deinum, L.J. Schultzekool, D. Blondin, O. Vonend, A.R.R.M. Hermus et al. Plasma metanephrine for assessing the selectivity of adrenal venous sampling. Hypertens. (Dallas, Tex. 1979) 62, 1152–1157 (2013). https://doi.org/10.1161/HYPERTENSIONAHA.113.01601

    Article  CAS  Google Scholar 

  159. R. Webb, A. Mathur, R. Chang, S. Baid, N. Nilubol, S.K. Libutti et al. What is the best criterion for the interpretation of adrenal vein sample results in patients with primary hyperaldosteronism? Ann. Surg. Oncol. 19, 1881–1886 (2012). https://doi.org/10.1245/S10434-011-2121-5

    Article  PubMed  Google Scholar 

  160. H. Umakoshi, K. Tanase-Nakao, N. Wada, T. Ichijo, M. Sone, N. Inagaki et al. Importance of contralateral aldosterone suppression during adrenal vein sampling in the subtype evaluation of primary aldosteronism. Clin. Endocrinol. (Oxf.) 83, 462–467 (2015). https://doi.org/10.1111/CEN.12761

    Article  CAS  PubMed  Google Scholar 

  161. M. Araujo-Castro, P. Martín Rojas-Marcos, P. Parra Ramírez, Familial forms and molecular profile of primary hyperaldosteronism. Hipertens y. Riesgo Vasc. 39, 167–173 (2022). https://doi.org/10.1016/J.HIPERT.2022.05.007

    Article  CAS  Google Scholar 

  162. A.A. MacConnachie, K.F. Kelly, A. McNamara, S. Loughlin, L.J. Gates, G.C. Inglis et al. Rapid diagnosis and identification of cross-over sites in patients with glucocorticoid remediable aldosteronism. J. Clin. Endocrinol. Metab. 83, 4328–4331 (1998). https://doi.org/10.1210/JCEM.83.12.5309

    Article  CAS  PubMed  Google Scholar 

  163. P. Mulatero, P. Tauber, M.C. Zennaro, S. Monticone, K. Lang, F. Beuschlein et al. KCNJ5 mutations in European families with nonglucocorticoid remediable familial hyperaldosteronism. Hypertension 59, 235–240 (2012). https://doi.org/10.1161/HYPERTENSIONAHA.111.183996

    Article  CAS  PubMed  Google Scholar 

  164. C.E. Gomez-Sanchez, X. Qi, E.P. Gomez-Sanchez, H. Sasano, M.O. Bohlen, M. Wisgerhof, Disordered zonal and cellular CYP11B2 enzyme expression in familial hyperaldosteronism type 3. Mol. Cell Endocrinol. 439, 74–80 (2017). https://doi.org/10.1016/J.MCE.2016.10.025

    Article  CAS  PubMed  Google Scholar 

  165. U.I. Scholl, G. Stölting, C. Nelson-Williams, A.A. Vichot, M. Choi, E. Loring et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife 4, e06315 (2015). https://doi.org/10.7554/eLife.06315

    Article  PubMed  PubMed Central  Google Scholar 

  166. A. Pinggera, L. Mackenroth, A. Rump, J. Schallner, F. Beleggia, B. Wollnik et al. New gain-of-function mutation shows CACNA1D as recurrently mutated gene in autism spectrum disorders and epilepsy. Hum. Mol. Genet 26, 2923–2932 (2017). https://doi.org/10.1093/HMG/DDX175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. E. Seidel, J. Schewe, U.I. Scholl, Genetic causes of primary aldosteronism. Exp. Mol. Med 51, 1–12 (2019). https://doi.org/10.1038/s12276-019-0337-9

    Article  CAS  PubMed  Google Scholar 

  168. G. Eisenhofer, C. Durán, C.V. Cannistraci, M. Peitzsch, T.A. Williams, A. Riester et al. Use of steroid profiling combined with machine learning for identification and subtype classification in primary aldosteronism. JAMA Netw. Open 3, e2016209 (2020). https://doi.org/10.1001/JAMANETWORKOPEN.2020.16209

    Article  PubMed  PubMed Central  Google Scholar 

  169. Y. Tezuka, K. Ishii, L. Zhao, Y. Yamazaki, R. Morimoto, H. Sasano et al. ACTH stimulation maximizes the accuracy of peripheral steroid profiling in primary aldosteronism subtyping. J. Clin. Endocrinol. Metab. 106, E3969–E3978 (2021). https://doi.org/10.1210/CLINEM/DGAB420

    Article  PubMed  PubMed Central  Google Scholar 

  170. S. Monticone, F. Buffolo, M. Tetti, F. Veglio, B. Pasini, P. Mulatero, GENETICS IN ENDOCRINOLOGY: The expanding genetic horizon of primary aldosteronism. Eur. J. Endocrinol. 178, R101–R111 (2018). https://doi.org/10.1530/EJE-17-0946

    Article  CAS  PubMed  Google Scholar 

  171. T. Åkerström, J. Crona, A. Delgado Verdugo, L.F. Starker, K. Cupisti, H.S. Willenberg et al. Comprehensive re-sequencing of adrenal aldosterone producing lesions reveal three somatic mutations near the KCNJ5 potassium channel selectivity filter. PLoS One 7, e41926 (2012). https://doi.org/10.1371/JOURNAL.PONE.0041926

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  172. I.C. Mouat, K. Omata, A.S. McDaniel, N.G. Hattangady, D. Talapatra, A.K. Cani et al. Somatic mutations in adrenocortical carcinoma with primary aldosteronism or hyperreninemic hyperaldosteronism. Endocr. Relat. Cancer 26, 217–225 (2019). https://doi.org/10.1530/ERC-18-0385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. S. Gruber, E. Stasi, R. Steiner, M. Reincke, S. Bornstein, F. Beuschlein, Incidence of primary aldosteronism in patients with hypokalemia (IPAHK+): study design and baseline characteristics. Horm. Metab. Res 53, 787–793 (2021). https://doi.org/10.1055/a-1685-0583

    Article  CAS  PubMed  Google Scholar 

  174. T.M. Seccia, C. Letizia, M.L. Muiesan, S. Lerco, M. Cesari, V. Bisogni et al. Atrial fibrillation as presenting sign of primary aldosteronism: Results of the prospective appraisal on the prevalence of primary aldosteronism in hypertensive (PAPPHY) study. J. Hypertens. 38, 332–339 (2020). https://doi.org/10.1097/HJH.0000000000002250

    Article  CAS  PubMed  Google Scholar 

  175. F. Buffolo, Q. Li, S. Monticone, D.A. Heinrich, A. Mattei, J. Pieroni et al. Primary aldosteronism and obstructive sleep apnea a cross-sectional multi-ethnic study. Hypertension 74, 1532–1540 (2019). https://doi.org/10.1161/HYPERTENSIONAHA.119.13833

    Article  CAS  PubMed  Google Scholar 

  176. J. Ceral, E. Malirova, M. Ballon, M. Solar, The role of urinary aldosterone for the diagnosis of primary aldosteronism. Horm. Metab. Res. 46, 663–667 (2014). https://doi.org/10.1055/S-0034-1374638

    Article  CAS  PubMed  Google Scholar 

  177. A.H. Ahmed, D. Cowley, M. Wolley, R.D. Gordon, S. Xu, P.J. Taylor et al. Seated saline suppression testing for the diagnosis of primary aldosteronism: a preliminary study. J. Clin. Endocrinol. Metab. 99, 2745–2753 (2014). https://doi.org/10.1210/JC.2014-1153

    Article  CAS  PubMed  Google Scholar 

  178. M.H. Lee, J.E. Moxey, M.M. Derbyshire, G.M. Ward, R.J. Macisaac, N. Sachithanandan, Decrease in serum potassium levels post saline suppression test in primary aldosteronism: an under-recognised phenomenon? J. Hum. Hypertens. 30, 664–665 (2016). https://doi.org/10.1038/JHH.2016.7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alberto Fernandez for the review of the manuscript. This consensus was sponsored by all implicated Societies.

Author contributions

MAC and FH wrote the main manuscript text and all authors reviewed the manuscript

Funding

This research was funded by all participating societies.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Marta Araujo-Castro or Felicia A. Hanzu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo-Castro, M., Ruiz-Sánchez, J.G., Parra Ramírez, P. et al. Screening and diagnosis of primary aldosteronism. Consensus document of all the Spanish Societies involved in the management of primary aldosteronism. Endocrine (2024). https://doi.org/10.1007/s12020-024-03751-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-024-03751-1

Keywords

Navigation