Skip to main content

Advertisement

Log in

Causal relationships between gut microbiota and hypothyroidism: a Mendelian randomization study

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Previous studies have shown that the gut microbiota plays an important role in the maintenance of thyroid homeostasis. We aimed to evaluate the causal relationships between gut microbiota and hypothyroidism.

Methods

Summary statistics for 211 gut microbiota taxa were obtained from the largest available genome-wide association study (GWAS) meta-analysis conducted by the MiBioGen consortium. Summary statistics for hypothyroidism were obtained from two distinct sources: the FinnGen consortium R9 release data (40,926 cases and 274,069 controls) and the UK Biobank data (22,687 cases and 440,246 controls), respectively. A two-sample Mendelian randomization (MR) design was employed, and thorough sensitivity analyses were carried out to ensure the reliability of the results.

Results

Based on the FinnGen consortium, we found increased levels of Intestinimonas (OR = 1.09; 95%CI = 1.02–1.16; P = 0.01) and Ruminiclostridium5 (OR = 1.11; 95%CI = 1.02–1.22; P = 0.02) may be associated with a higher risk of hypothyroidism, while increased levels of Butyrivibrio (OR = 0.95; 95%CI = 0.92–0.99; P = 0.02), Eggerthella (OR = 0.93; 95%CI = 0.88–0.98; P = 0.01), Lachnospiraceae UCG008 (OR = 0.92; 95%CI = 0.85–0.99; P = 0.02), Ruminococcaceae UCG011 (OR = 0.95; 95%CI = 0.90–0.99; P = 0.02), and Actinobacteria (OR = 0.88; 95%CI = 0.80–0.97; P = 0.01) may be associated with a lower risk. According to the UK Biobank data, Eggerthella and Ruminiclostridium5 remain causally associated with hypothyroidism. The sensitivity analysis demonstrates consistent results without evidence of heterogeneity or pleiotropy.

Conclusion

This study highlights the impact of specific gut microbiota on hypothyroidism. Strategies to change composition of gut microbiota may hold promise as potential interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data for this study were sourced from publicly available archives and former investigative studies.

References

  1. H. Brody, The gut microbiome. Nature 577(7792), S5 (2020). https://doi.org/10.1038/d41586-020-00194-2

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Knezevic J., Starchl C., Tmava Berisha A., Amrein K. Thyroid-gut-axis: how does the microbiota influence thyroid function? Nutrients 12(6) (2020). https://doi.org/10.3390/nu12061769

  3. W. Jiang, G. Lu, D. Gao, Z. Lv, D. Li, The relationships between the gut microbiota and its metabolites with thyroid diseases. Front. Endocrinol. 13, 943408 (2022). https://doi.org/10.3389/fendo.2022.943408

    Article  Google Scholar 

  4. C. Virili, I. Stramazzo, M. Centanni, Gut microbiome and thyroid autoimmunity. Best Pract. Res. Clin. Endocrinol. Metab. 35(3), 101506 (2021). https://doi.org/10.1016/j.beem.2021.101506

    Article  CAS  PubMed  Google Scholar 

  5. Sawicka-Gutaj N., Gruszczyński D., Zawalna N., Nijakowski K., Muller I., Karpiński T., Salvi M., Ruchała M. Microbiota alterations in patients with autoimmune thyroid diseases: a systematic review. Int. J. Mol. Sci. 23(21) (2022). https://doi.org/10.3390/ijms232113450

  6. J. Bowden, M.V. Holmes, Meta-analysis and Mendelian randomization: a review. Res. Synth. Methods 10(4), 486–496 (2019). https://doi.org/10.1002/jrsm.1346

    Article  PubMed  PubMed Central  Google Scholar 

  7. V.W. Skrivankova, R.C. Richmond, B.A.R. Woolf, J. Yarmolinsky, N.M. Davies, S.A. Swanson, T.J. VanderWeele, J.P.T. Higgins, N.J. Timpson, N. Dimou, C. Langenberg, R.M. Golub, E.W. Loder, V. Gallo, A. Tybjaerg-Hansen, G. Davey Smith, M. Egger, J.B. Richards, Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR statement. JAMA 326(16), 1614–1621 (2021). https://doi.org/10.1001/jama.2021.18236

    Article  PubMed  Google Scholar 

  8. A. Kurilshikov, C. Medina-Gomez, R. Bacigalupe, D. Radjabzadeh, J. Wang, A. Demirkan, C.I. Le Roy, J.A. Raygoza Garay, C.T. Finnicum, X. Liu, D.V. Zhernakova, M.J. Bonder, T.H. Hansen, F. Frost, M.C. Rühlemann, W. Turpin, J.Y. Moon, H.N. Kim, K. Lüll, E. Barkan, S.A. Shah, M. Fornage, J. Szopinska-Tokov, Z.D. Wallen, D. Borisevich, L. Agreus, A. Andreasson, C. Bang, L. Bedrani, J.T. Bell, H. Bisgaard, M. Boehnke, D.I. Boomsma, R.D. Burk, A. Claringbould, K. Croitoru, G.E. Davies, C.M. van Duijn, L. Duijts, G. Falony, J. Fu, A. van der Graaf, T. Hansen, G. Homuth, D.A. Hughes, R.G. Ijzerman, M.A. Jackson, V.W.V. Jaddoe, M. Joossens, T. Jørgensen, D. Keszthelyi, R. Knight, M. Laakso, M. Laudes, L.J. Launer, W. Lieb, A.J. Lusis, A.A.M. Masclee, H.A. Moll, Z. Mujagic, Q. Qibin, D. Rothschild, H. Shin, S.J. Sørensen, C.J. Steves, J. Thorsen, N.J. Timpson, R.Y. Tito, S. Vieira-Silva, U. Völker, H. Völzke, U. Võsa, K.H. Wade, S. Walter, K. Watanabe, S. Weiss, F.U. Weiss, O. Weissbrod, H.J. Westra, G. Willemsen, H. Payami, D. Jonkers, A. Arias Vasquez, E.J.C. de Geus, K.A. Meyer, J. Stokholm, E. Segal, E. Org, C. Wijmenga, H.L. Kim, R.C. Kaplan, T.D. Spector, A.G. Uitterlinden, F. Rivadeneira, A. Franke, M.M. Lerch, L. Franke, S. Sanna, M. D’Amato, O. Pedersen, A.D. Paterson, R. Kraaij, J. Raes, A. Zhernakova, Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 53(2), 156–165 (2021). https://doi.org/10.1038/s41588-020-00763-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M.I. Kurki, J. Karjalainen, P. Palta, T.P. Sipilä, K. Kristiansson, K.M. Donner, M.P. Reeve, H. Laivuori, M. Aavikko, M.A. Kaunisto, A. Loukola, E. Lahtela, H. Mattsson, P. Laiho, P. Della Briotta Parolo, A.A. Lehisto, M. Kanai, N. Mars, J. Rämö, T. Kiiskinen, H.O. Heyne, K. Veerapen, S. Rüeger, S. Lemmelä, W. Zhou, S. Ruotsalainen, K. Pärn, T. Hiekkalinna, S. Koskelainen, T. Paajanen, V. Llorens, J. Gracia-Tabuenca, H. Siirtola, K. Reis, A.G. Elnahas, B. Sun, C.N. Foley, K. Aalto-Setälä, K. Alasoo, M. Arvas, K. Auro, S. Biswas, A. Bizaki-Vallaskangas, O. Carpen, C.Y. Chen, O.A. Dada, Z. Ding, M.G. Ehm, K. Eklund, M. Färkkilä, H. Finucane, A. Ganna, A. Ghazal, R.R. Graham, E.M. Green, A. Hakanen, M. Hautalahti, Å.K. Hedman, M. Hiltunen, R. Hinttala, I. Hovatta, X. Hu, A. Huertas-Vazquez, L. Huilaja, J. Hunkapiller, H. Jacob, J.N. Jensen, H. Joensuu, S. John, V. Julkunen, M. Jung, J. Junttila, K. Kaarniranta, M. Kähönen, R. Kajanne, L. Kallio, R. Kälviäinen, J. Kaprio, N. Kerimov, J. Kettunen, E. Kilpeläinen, T. Kilpi, K. Klinger, V.M. Kosma, T. Kuopio, V. Kurra, T. Laisk, J. Laukkanen, N. Lawless, A. Liu, S. Longerich, R. Mägi, J. Mäkelä, A. Mäkitie, A. Malarstig, A. Mannermaa, J. Maranville, A. Matakidou, T. Meretoja, S.V. Mozaffari, M.E.K. Niemi, M. Niemi, T. Niiranen, O.D. CJ, M.E. Obeidat, G. Okafo, H.M. Ollila, A. Palomäki, T. Palotie, J. Partanen, D.S. Paul, M. Pelkonen, R.K. Pendergrass, S. Petrovski, A. Pitkäranta, A. Platt, D. Pulford, E. Punkka, P. Pussinen, N. Raghavan, F. Rahimov, D. Rajpal, N.A. Renaud, B. Riley-Gillis, R. Rodosthenous, E. Saarentaus, A. Salminen, E. Salminen, V. Salomaa, J. Schleutker, R. Serpi, H.Y. Shen, R. Siegel, K. Silander, S. Siltanen, S. Soini, H. Soininen, J.H. Sul, I. Tachmazidou, K. Tasanen, P. Tienari, S. Toppila-Salmi, T. Tukiainen, T. Tuomi, J.A. Turunen, J.C. Ulirsch, F. Vaura, P. Virolainen, J. Waring, D. Waterworth, R. Yang, M. Nelis, A. Reigo, A. Metspalu, L. Milani, T. Esko, C. Fox, A.S. Havulinna, M. Perola, S. Ripatti, A. Jalanko, T. Laitinen, T.P. Mäkelä, R. Plenge, M. McCarthy, H. Runz, M.J. Daly, A. Palotie, FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613(7944), 508–518 (2023). https://doi.org/10.1038/s41586-022-05473-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. N. Rusk, The UK Biobank. Nat. Methods 15(12), 1001 (2018). https://doi.org/10.1038/s41592-018-0245-2

    Article  CAS  PubMed  Google Scholar 

  11. S. Sanna, N.R. van Zuydam, A. Mahajan, A. Kurilshikov, A. Vich Vila, U. Võsa, Z. Mujagic, A.A.M. Masclee, D. Jonkers, M. Oosting, L.A.B. Joosten, M.G. Netea, L. Franke, A. Zhernakova, J. Fu, C. Wijmenga, M.I. McCarthy, Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51(4), 600–605 (2019). https://doi.org/10.1038/s41588-019-0350-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. J.R. Staley, J. Blackshaw, M.A. Kamat, S. Ellis, P. Surendran, B.B. Sun, D.S. Paul, D. Freitag, S. Burgess, J. Danesh, R. Young, A.S. Butterworth, PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics 32(20), 3207–3209 (2016). https://doi.org/10.1093/bioinformatics/btw373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Y. Wu, Y. Li, J. Zhu, J. Long, Shared genetics and causality underlying epilepsy and attention-deficit hyperactivity disorder. Psychiatry Res. 316, 114794 (2022). https://doi.org/10.1016/j.psychres.2022.114794

    Article  CAS  PubMed  Google Scholar 

  14. M. Verbanck, C.Y. Chen, B. Neale, R. Do, Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50(5), 693–698 (2018). https://doi.org/10.1038/s41588-018-0099-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A.C. Fenneman, E. Bruinstroop, M. Nieuwdorp, A.H. van der Spek, A. Boelen, A comprehensive review of thyroid hormone metabolism in the gut and its clinical implications. Thyroid 33(1), 32–44 (2023). https://doi.org/10.1089/thy.2022.0491

    Article  CAS  PubMed  Google Scholar 

  16. Liu Q., Sun W., Zhang H. Interaction of gut microbiota with endocrine homeostasis and thyroid cancer. Cancers 14(11) (2022). https://doi.org/10.3390/cancers14112656

  17. R. John Wallace, Gut microbiology—broad genetic diversity, yet specific metabolic niches. Animal 2(5), 661–8 (2008). https://doi.org/10.1017/s1751731108001687

    Article  CAS  PubMed  Google Scholar 

  18. H. Derakhshani, S.W. Corley, R. Al Jassim, Isolation and characterization of mimosine, 3, 4 DHP and 2, 3 DHP degrading bacteria from a commercial rumen inoculum. J. Basic Microbiol. 56(5), 580–5 (2016). https://doi.org/10.1002/jobm.201500590

    Article  CAS  PubMed  Google Scholar 

  19. S.H. Chang, Y. Choi, Gut dysbiosis in autoimmune diseases: association with mortality. Front. Cell. Infect. Microbiol. 13, 1157918 (2023). https://doi.org/10.3389/fcimb.2023.1157918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Alexander, Q.Y. Ang, R.R. Nayak, A.E. Bustion, M. Sandy, B. Zhang, V. Upadhyay, K.S. Pollard, S.V. Lynch, P.J. Turnbaugh, Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host Microbe 30(1), 17–30.e9 (2022). https://doi.org/10.1016/j.chom.2021.11.001

    Article  CAS  PubMed  Google Scholar 

  21. J.D. Forbes, C.Y. Chen, N.C. Knox, R.A. Marrie, H. El-Gabalawy, T. de Kievit, M. Alfa, C.N. Bernstein, G. Van Domselaar, A comparative study of the gut microbiota in immune-mediated inflammatory diseases-does a common dysbiosis exist? Microbiome 6(1), 221 (2018). https://doi.org/10.1186/s40168-018-0603-4

    Article  PubMed  PubMed Central  Google Scholar 

  22. N. Li, J. Wang, P. Liu, J. Li, C. Xu, Multi-omics reveals that Bifidobacterium breve M-16V may alleviate the immune dysregulation caused by nanopolystyrene. Environ. Int. 163, 107191 (2022). https://doi.org/10.1016/j.envint.2022.107191

    Article  CAS  PubMed  Google Scholar 

  23. B. Zhang, T. Chen, M. Cao, C. Yuan, R.J. Reiter, Z. Zhao, Y. Zhao, L. Chen, W. Fan, X. Wang, X. Zhou, C. Li, Gut microbiota dysbiosis induced by decreasing endogenous melatonin mediates the pathogenesis of Alzheimer’s disease and obesity. Front. Immunol. 13, 900132 (2022). https://doi.org/10.3389/fimmu.2022.900132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. X. Zhang, D. Yu, D. Wu, X. Gao, F. Shao, M. Zhao, J. Wang, J. Ma, W. Wang, X. Qin, Y. Chen, P. Xia, S. Wang, Tissue-resident Lachnospiraceae family bacteria protect against colorectal carcinogenesis by promoting tumor immune surveillance. Cell Host Microbe 31(3), 418–432.e8 (2023). https://doi.org/10.1016/j.chom.2023.01.013

    Article  CAS  PubMed  Google Scholar 

  25. S. Just, S. Mondot, J. Ecker, K. Wegner, E. Rath, L. Gau, T. Streidl, G. Hery-Arnaud, S. Schmidt, T.R. Lesker, V. Bieth, A. Dunkel, T. Strowig, T. Hofmann, D. Haller, G. Liebisch, P. Gérard, S. Rohn, P. Lepage, T. Clavel, The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism. Microbiome 6(1), 134 (2018). https://doi.org/10.1186/s40168-018-0510-8

    Article  PubMed  PubMed Central  Google Scholar 

  26. M.T. Sorbara, E.R. Littmann, E. Fontana, T.U. Moody, C.E. Kohout, M. Gjonbalaj, V. Eaton, R. Seok, I.M. Leiner, E.G. Pamer, Functional and genomic variation between human-derived isolates of Lachnospiraceae reveals inter- and intra-species diversity. Cell Host Microbe 28(1), 134–146.e4 (2020). https://doi.org/10.1016/j.chom.2020.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. J. Cao, N. Wang, Y. Luo, C. Ma, Z. Chen, C. Chenzhao, F. Zhang, X. Qi, W. Xiong, A cause-effect relationship between Graves’ disease and the gut microbiome contributes to the thyroid-gut axis: a bidirectional two-sample Mendelian randomization study. Front. Immunol. 14, 977587 (2023). https://doi.org/10.3389/fimmu.2023.977587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu M.D., Cheng M.J. Undescribed metabolites from an Actinobacteria Acrocarpospora punica and their anti-inflammatory activity. Molecules 27(22) (2022). https://doi.org/10.3390/molecules27227982

  29. Su Y.S., Wu M.D., Chen J.J., Cheng M.J., Kuo Y.H., Chai C.Y., Kwan A.L. Secondary metabolites with anti-inflammatory activities from one Actinobacteria Amycolatopsis Taiwanensis. Molecules 26(19) (2021). https://doi.org/10.3390/molecules26195765

  30. Chen J.J., Lee T.H., Cheng M.J. Secondary metabolites with anti-inflammatory activities from an Actinobacteria Herbidospora daliensis. Molecules 27(6) (2022). https://doi.org/10.3390/molecules27061887

  31. R. Pittayanon, J.T. Lau, Y. Yuan, G.I. Leontiadis, F. Tse, M. Surette, P. Moayyedi, Gut microbiota in patients with irritable bowel syndrome—A systematic review. Gastroenterology 157(1), 97–108 (2019). https://doi.org/10.1053/j.gastro.2019.03.049

    Article  PubMed  Google Scholar 

  32. Z. Zhuang, N. Li, J. Wang, R. Yang, W. Wang, Z. Liu, T. Huang, GWAS-associated bacteria and their metabolites appear to be causally related to the development of inflammatory bowel disease. Eur. J. Clin. Nutr. 76(7), 1024–1030 (2022). https://doi.org/10.1038/s41430-022-01074-w

    Article  CAS  PubMed  Google Scholar 

  33. A.D. Kjaergaard, E. Marouli, A. Papadopoulou, P. Deloukas, A. Kuś, R. Sterenborg, A. Teumer, S. Burgess, B.O. Åsvold, D.I. Chasman, M. Medici, C. Ellervik, Thyroid function, sex hormones and sexual function: a Mendelian randomization study. Eur. J. Epidemiol. 36(3), 335–344 (2021). https://doi.org/10.1007/s10654-021-00721-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. W. Zhou, B. Brumpton, O. Kabil, J. Gudmundsson, G. Thorleifsson, J. Weinstock, M. Zawistowski, J.B. Nielsen, L. Chaker, M. Medici, A. Teumer, S. Naitza, S. Sanna, U.T. Schultheiss, A. Cappola, J. Karjalainen, M. Kurki, M. Oneka, P. Taylor, L.G. Fritsche, S.E. Graham, B.N. Wolford, W. Overton, H. Rasheed, E.B. Haug, M.E. Gabrielsen, A.H. Skogholt, I. Surakka, G. Davey Smith, A. Pandit, T. Roychowdhury, W.E. Hornsby, J.G. Jonasson, L. Senter, S. Liyanarachchi, M.D. Ringel, L. Xu, L.A. Kiemeney, H. He, R.T. Netea-Maier, J.I. Mayordomo, T.S. Plantinga, J. Hrafnkelsson, H. Hjartarson, E.M. Sturgis, A. Palotie, M. Daly, C.E. Citterio, P. Arvan, C.M. Brummett, M. Boehnke, A. de la Chapelle, K. Stefansson, K. Hveem, C.J. Willer, B.O. Åsvold, GWAS of thyroid stimulating hormone highlights pleiotropic effects and inverse association with thyroid cancer. Nat. Commun. 11(1), 3981 (2020). https://doi.org/10.1038/s41467-020-17718-z

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. W. Zhou, B. Brumpton, O. Kabil, J. Gudmundsson, G. Thorleifsson, J. Weinstock, M. Zawistowski, J.B. Nielsen, L. Chaker, M. Medici, A. Teumer, S. Naitza, S. Sanna, U.T. Schultheiss, A. Cappola, J. Karjalainen, M. Kurki, M. Oneka, P. Taylor, L.G. Fritsche, S.E. Graham, B.N. Wolford, W. Overton, H. Rasheed, E.B. Haug, M.E. Gabrielsen, A.H. Skogholt, I. Surakka, G. Davey Smith, A. Pandit, T. Roychowdhury, W.E. Hornsby, J.G. Jonasson, L. Senter, S. Liyanarachchi, M.D. Ringel, L. Xu, L.A. Kiemeney, H. He, R.T. Netea-Maier, J.I. Mayordomo, T.S. Plantinga, J. Hrafnkelsson, H. Hjartarson, E.M. Sturgis, A. Palotie, M. Daly, C.E. Citterio, P. Arvan, C.M. Brummett, M. Boehnke, A. de la Chapelle, K. Stefansson, K. Hveem, C.J. Willer, B.O. Åsvold, Author correction: GWAS of thyroid stimulating hormone highlights the pleiotropic effects and inverse association with thyroid cancer. Nat. Commun. 12(1), 7354 (2021). https://doi.org/10.1038/s41467-021-27675-w

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

We want to acknowledge all participants of this study and the technical support provided by the Jiangsu University.

Funding

This study was supported by the Guang Ren Foundation Research Project of Affiliated Hospital of Jiangsu University (KRY-YN2022017), the Suzhou Key Clinical Disease Diagnosis and Treatment Technology of Special Project (LCZX202023), and the Suzhou Science and Technology Planning Project (STL2021006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Lu or Shao Zhong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Zhaoxiang Wang, Menghuan Wu, Ying Pan

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wu, M., Pan, Y. et al. Causal relationships between gut microbiota and hypothyroidism: a Mendelian randomization study. Endocrine 83, 708–718 (2024). https://doi.org/10.1007/s12020-023-03538-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03538-w

Keywords

Navigation