Skip to main content

Advertisement

Log in

Relation of adipose tissue and skeletal muscle FKBP5 expression with insulin sensitivity and the regulation of FKBP5 by insulin and free fatty acids

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Recent studies suggest that FK506 binding protein 51 (FKBP51), a negative regulator of glucocorticoid response, encoded by FKBP5, may influence insulin action. The aim of the present study was to assess the relationship between subcutaneous adipose tissue (AT) and skeletal muscle FKBP5 expression in relation to insulin sensitivity in healthy individuals and to study its regulation by insulin and circulating free fatty acid (FFA) elevation.

Methods

The study group comprised 96 male subjects, 49 normal-weight and 47 overweight/obese. Hyperinsulinemic clamp, subcutaneous AT and skeletal muscle biopsies were performed. In a subgroup of 20 subjects, two 6 h clamps were performed, with and without Intralipid/heparin infusion, and tissue biopsies were obtained before and after each clamp.

Results

AT FKBP5 expression was lower in overweight/obese individuals in comparison with normal-weight individuals (p = 0.004). Muscle FKBP5 expression did not differ between the groups, however, it was inversely related to insulin sensitivity (r = −0.32, p = 0.002). FKBP5 expression decreased in AT (p = 0.003) and increased in muscle (p < 0.0001) after insulin infusion. Intralipid/heparin diminished insulin-induced increase in muscle FKBP5.

Conclusion

Our data show that lower AT FKBP5 expression is related to obesity, whereas muscle FKBP5 expression is associated with insulin resistance. AT and muscle FKBP5 expression is differentially regulated by insulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data from the present study are available from the corresponding author upon reasonable request.

References

  1. M.P. Czech, Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 23, 804–814 (2017). https://doi.org/10.1038/nm.4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. B.E. Wisse, The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J. Am. Soc. Nephrol. 15, 2792–2800 (2004). https://doi.org/10.1097/01.ASN.0000141966.69934.21

    Article  CAS  PubMed  Google Scholar 

  3. E. Ferrannini, O. Bjorkman, G.A. Reichard Jr., A. Pilo, M. Olsson, J. Wahren, R.A. DeFronzo, The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes 34, 580–588 (1985). https://doi.org/10.2337/diab.34.6.580

    Article  CAS  PubMed  Google Scholar 

  4. E.B. Geer, J. Islam, C. Buettner, Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism. Endocrinol. Metab. Clin. North Am. 43, 75–102 (2014). https://doi.org/10.1016/j.ecl.2013.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Kumari, T. Chandola, E. Brunner, M. Kivimaki, A nonlinear relationship of generalized and central obesity with diurnal cortisol secretion in the Whitehall II study. J. Clin. Endocrinol. Metab. 95, 4415–4423 (2010). https://doi.org/10.1210/jc.2009-2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Schorr, E.A. Lawson, L.E. Dichtel, A. Klibanski, K.K. Miller, Cortisol measures across the weight spectrum. J. Clin. Endocrinol. Metab. 100, 3313–3321 (2015). https://doi.org/10.1210/JC.2015-2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. R.A. Lee, C.A. Harris, J.C. Wang, Glucocorticoid receptor and adipocyte biology. Nucl. Receptor Res. 5, 101373 (2018). https://doi.org/10.32527/2018/101373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. L.L. Gathercole, S.A. Morgan, I.J. Bujalska, D. Hauton, P.M. Stewart, J.W. Tomlinson, Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue. PloS. One 6, e26223 (2011). https://doi.org/10.1371/journal.pone.0026223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. J. Burén, H.X. Liu, J. Jensen, J.W. Eriksson, Dexamethasone impairs insulin signalling and glucose transport by depletion of insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase B in primary cultured rat adipocytes. Eur. J. Endocrinol. 146, 419–429 (2002). https://doi.org/10.1530/eje.0.1460419

    Article  PubMed  Google Scholar 

  10. M. Lundgren, J. Burén, T. Ruge, T. Myrnäs, J.W. Eriksson, Glucocorticoids down-regulate glucose uptake capacity and insulin-signaling proteins in omental but not subcutaneous human adipocytes. J. Clin. Endocrinol. Metab. 89, 2989–2997 (2004). https://doi.org/10.1210/jc.2003-031157

    Article  CAS  PubMed  Google Scholar 

  11. L.L. Gathercole, I.J. Bujalska, P.M. Stewart, J.W. Tomlinson, Glucocorticoid modulation of insulin signaling in human subcutaneous adipose tissue. J. Clin. Endocrinol. Metab. 92, 4332–4339 (2007). https://doi.org/10.1210/jc.2007-1399

    Article  CAS  PubMed  Google Scholar 

  12. T. Ratajczak, C. Cluning, B.K. Ward, Steroid receptor-associated immunophilins: a gateway to steroid signaling. Clin. Biochem. Rev. 36, 31–52 (2015)

    PubMed  PubMed Central  Google Scholar 

  13. A.S. Zannas, T. Wiechmann, N.C. Gassen, E.B. Binder, Gene-stress-epigenetic regulation of FKBP5: clinical and translational implications. Neuropsychopharmacology 41, 261–274 (2016). https://doi.org/10.1038/npp.2015.235

    Article  CAS  PubMed  Google Scholar 

  14. G. Balsevich, A. Uribe, K.V. Wagner, J. Hartmann, S. Santarelli, C. Labermaier, M.V. Schmidt, Interplay between diet-induced obesity and chronic stress in mice: potential role of FKBP51. J. Endocrinol. 222, 15–26 (2014). https://doi.org/10.1530/JOE-14-0129

    Article  CAS  PubMed  Google Scholar 

  15. L.A. Stechschulte, B. Qiu, M. Warrier, T.D. Hinds Jr., M. Zhang, H. Gu, Y. Xu, S.S. Khuder, L. Russo, S.M. Najjar, B. Lecka-Czernik, W. Yong, E.R. Sanchez, FKBP51 null mice are resistant to diet-induced obesity and the pparγ agonist rosiglitazone. Endocrinology 157, 3888–3900 (2016). https://doi.org/10.1210/en.2015-1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. G. Balsevich, A.S. Häusl, C.W. Meyer, S. Karamihalev, X. Feng, M.L. Pöhlmann, C. Dournes, A. Uribe-Marino, S. Santarelli, C. Labermaier, K. Hafner, T. Mao, M. Breitsamer, M. Theodoropoulou, C. Namendorf, M. Uhr, M. Paez-Pereda, G. Winter, F. Hausch, A. Chen, M.H. Tschöp, T. Rein, N.C. Gassen, M.V. Schmidt, Stress-responsive FKBP51 regulates AKT2-AS160 signaling and metabolic function. Nat. Commun. 8, 1725 (2017). https://doi.org/10.1038/s41467-017-01783-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A.I. Su, T. Wiltshire, S. Batalov, H. Lapp, K.A. Ching, D. Block, J. Zhang, R. Soden, M. Hayakawa, G. Kreiman, M.P. Cooke, J.R. Walker, J.B. Hogenesch, A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl Acad. Sci. USA 101, 6062–6067 (2004). https://doi.org/10.1073/pnas.0400782101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. L.A. Stechschulte, T.D. Hinds Jr., S.S. Khuder, W. Shou, S.M. Najjar, E.R. Sanchez, FKBP51 controls cellular adipogenesis through p38 kinase-mediated phosphorylation of GRα and PPARγ. Mol. Endocrinol. 28, 1265–1275 (2014). https://doi.org/10.1210/me.2014-1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M.J. Pereira, J. Palming, M.K. Svensson, M. Rizell, J. Dalenbäck, M. Hammar, T. Fall, C.O. Sidibeh, P.A. Svensson, J.W. Eriksson, FKBP5 expression in human adipose tissue increases following dexamethasone exposure and is associated with insulin resistance. Metabolism 63, 1198–1208 (2014). https://doi.org/10.1016/j.metabol.2014.05.015

    Article  CAS  PubMed  Google Scholar 

  20. C.O. Sidibeh, M.J. Pereira, X.M. Abalo, J. Boersma, G. Skrtic, S. Lundkvist, P. Katsogiannos, P. Hausch, F. Castillejo-López, J.W. C., Eriksson, FKBP5 expression in human adipose tissue: potential role in glucose and lipid metabolism, adipogenesis and type 2 diabetes. Endocrine 62, 1161–1128 (2018). https://doi.org/10.1007/s12020-018-1674-5

    Article  CAS  Google Scholar 

  21. M. Karczewska-Kupczewska, M. Stefanowicz, N. Matulewicz, A. Nikołajuk, M. Strączkowski, Wnt signaling genes in adipose tissue and skeletal muscle of humans with different degrees of insulin sensitivity. J. Clin. Endocrinol. Metab 101, 3079–3087 (2016). https://doi.org/10.1210/jc.2016-1594

    Article  CAS  PubMed  Google Scholar 

  22. N. Matulewicz, M. Stefanowicz, A. Nikołajuk, M. Karczewska-Kupczewska, Markers of adipogenesis, but not inflammation in adipose tissue, are independently related to insulin sensitivity. J. Clin. Endocrinol. Metab. 102, 3040–3049 (2017). https://doi.org/10.1210/jc.2017-00597

    Article  PubMed  Google Scholar 

  23. L. Zhang, B. Qiu, T. Wang, J. Wang, M. Liu, Y. Xu, C. Wang, R. Deng, K. Williams, Z. Yang, T. Liang, W. Yong, Loss of FKBP5 impedes adipocyte differentiation under both normoxia and hypoxic stress. Biochem. Biophys. Res. Commun. 485, 761–767 (2017). https://doi.org/10.1080/15548627.2015.1100356

    Article  CAS  PubMed  Google Scholar 

  24. W.C. Yeh, T.K. Li, B.E. Bierer, S.L. McKnight, Identification and characterization of an immunophilin expressed during the clonal expansion phase of adipocyte differentiation. Proc. Natl Acad. Sci. USA 92, 11081–11085 (1995). https://doi.org/10.1073/pnas.92.24.11081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Fichna, I. Krzyśko-Pieczka, M. Żurawek, B. Skowrońska, D. Januszkiewicz-Lewandowska, P. Fichna, FKBP5 polymorphism is associated with insulin resistance in children and adolescents with obesity. Obes. Res. Clin. Pract. 12, 62–70 (2018). https://doi.org/10.1016/j.orcp.2016.11.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by The Grant UDA-POIG.01.03.01-00-128/08; from the Program Innovative Economy 2007-2013; part-financed by the European Union within the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Strączkowski.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to participate

A written informed consent was obtained from all individual participants included in the study.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study protocol was approved by the local ethics committee of the Medical University of Białystok.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strączkowski, M., Stefanowicz, M., Matulewicz, N. et al. Relation of adipose tissue and skeletal muscle FKBP5 expression with insulin sensitivity and the regulation of FKBP5 by insulin and free fatty acids. Endocrine 76, 536–542 (2022). https://doi.org/10.1007/s12020-022-03018-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03018-7

Keywords

Navigation