Skip to main content

Advertisement

Log in

Thyroid hormone deiodinases response in brain of spontaneausly hypertensive rats after hypotensive effects induced by mandibular extension

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

The deiodinases activate or inactivate the thyroid hormones (TH) in virtually all tissues in both physiological and pathological conditions. The three deiodinases, DIO1, DIO2, and DIO3, have different catalytic functions and regulate TH tissue distribution. The aim of the present study was to evaluate the modulation of gene expression of the deiodinases and TH transporters and protein levels of DIO1 in parietal and frontal areas of cerebral cortex of spontaneously hypertensive rats (SHRs), after two successive mandibular extensions (ME).

Methods

ME was performed on anesthetized rats by a dilatator appropriately designed and real-time PCR and western blotting techniques were employed for gene expression and protein level study.

Results

Mean blood pressure (MBP) significantly decreased in 2ME-treated rats when compared to sham-operated rats (p < 0.001) and this decrease lasted for the entire observation period. In gene expression analysis, in 2ME-treated rats we did not observe any significant variation of DIO1 and DIO3 with respect to the sham-operated rats. Differently, DIO2 gene expression significantly increased in frontal area of 2ME-treated rats, with respect to sham-operated rats (p < 0.01). Furthermore, in parietal area, protein levels of DIO1 in 2ME-treated rats were significantly higher than in sham-operated rats (p < 0.01). Moreover MCT8 and OATP1C1 both resulted significantly higher (p < 0.05 and p < 0.001) in sham frontal cortex.

Conclusion

In summary, our data on SHRs, while confirming the hypotensive effect of two MEs, show that the treatment also solicits the three deiodinases production in the cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Mendoza, A.N. Hollenberg, New insights into thyroid hormone action. Pharmacol. Ther. 173, 135–145 (2017). https://doi.org/10.1016/j.pharmthera.2017.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. G. Brent, Mechanisms of thyroid hormone action. J. Clin. Investig. 122, 3035–3043 (2012)

    Article  CAS  Google Scholar 

  3. J.P. Chanoine, L.E. Braverman, A.P. Farwell, The thyroid gland is a major source of circulating T3 in the rat. J. Clin. Investig. 91, 2709–2713 (1993). https://doi.org/10.1172/JCI116510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J.J. Distefano III, M. Jang, T.K. Malone, M. Broutman, Comprehensive kinetics of triiodothyronine production, distribution, and metabolism in blood and tissue pools of the rat using optimized blood-sampling protocols. Endocrinology 110, 198–213 (1982). https://doi.org/10.1210/endo-110-1-198

    Article  CAS  PubMed  Google Scholar 

  5. P.R. Larsen, J.E. Silva, M.M. Kaplan, Relationships between circulating and intracellular thyroid hormones: physiological and clinical implications. Endocr. Rev. 2, 87–102 (1981)

    Article  CAS  Google Scholar 

  6. B. Gereben, A.M. Zavacki, S. Ribich, B.W. Kim, S.A. Huang, W.S. Simonides, A. Zeold, A.C. Bianco, Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 29, 898–938 (2008). https://doi.org/10.1210/er.2008-0019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. C. Luongo, M. Dentice, D. Salvatore, Deiodinases and their intricate role in thyroid hormone homeostasis. Nat. Rev. Endocrinol. 15, 479–488 (2019). https://doi.org/10.1038/s41574-019-0218-2

    Article  PubMed  Google Scholar 

  8. N. Toyoda, E. Kaptein, M.J. Berry, J.W. Harney, P.R. Larsen, T.J. Visser, Structure-activity Relationships for Thyroid Hormone Deiodination by Mammalian Type I Iodothyronine Deiodinases. Endocrinology 138, 213–219 (1997). https://doi.org/10.1210/endo.138.1.4900

    Article  CAS  PubMed  Google Scholar 

  9. G. Wittmann, J. Szabon, P. Mohácsik, S.S. Nouriel, B. Gereben, C. Fekete, R.M. Lechan, Parallel regulation of thyroid hormone transporters OATP1c1 and MCT8 during and after endotoxemia at the blood-brain barrier of male rodents. Endocrinology 156, 1552–1564 (2015). https://doi.org/10.1210/en.2014-1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. Bernal, A. Guadaño-Ferraz, B. Morte, Thyroid hormone transporters—functions and clinical implications. Nat. Rev. Endocrinol. 11, 406–417 (2015). https://doi.org/10.1038/nrendo.2015.66

    Article  CAS  PubMed  Google Scholar 

  11. S. Mayerl, J. Müller, R. Bauer, S. Richert, C.M. Kassmann, V.M. Darras, K. Buder, A. Boelen, T.J. Visser, H. Heuer, Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J. Clin. Investig. 124, 1987–1999 (2014). https://doi.org/10.1172/JCI70324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. J. Dernellis, M. Panaretou, Effects of thyroid replacement therapy on arterial blood pressure in patients with hypertension and hypothyroidism. Am. Heart J. 143, 718–724 (2002). https://doi.org/10.1067/mhj.2002.120766

    Article  CAS  PubMed  Google Scholar 

  13. G. Grassi, D.D. Heistad, Remodelling of small cerebral arteries in human hypertension: structural and functional alterations. J. Hypertens. 27, 709–711 (2009). https://doi.org/10.1097/HJH.0b013e3283295dd4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. C. Cheng, C. Daskalakis, B. Falkner, Alterations in capillary morphology are found in mild blood pressure elevation. J. Hypertens. 28, 2258–2266 (2009). https://doi.org/10.1097/HJH.0b013e32833e113b

    Article  CAS  Google Scholar 

  15. E. Berta, I. Lengyel, S. Halmi, M. Zrinyl, A. Erdei, M. Harangi, D. Pall, E.V. Nagy, M. Bodor, Hypertension in thyroid disorders. Front. Endocrinol.10, 482 (2019). https://doi.org/10.3389/fendo.2019.00482

    Article  Google Scholar 

  16. L.M. Prisant, J.S. Gujral, A.L. Mulloy, Hyperthyroidism: a secondary cause of isolated systolic hypertension. J. Clin. Hypertens. 8, 596–599 (2006). https://doi.org/10.1111/j.1524-6175.2006.05180.x

    Article  Google Scholar 

  17. C.Del Seppia, D. Lapi, S. Ghione, G. Federighi, L. Sabatino, E. Fommei, A. Colantuoni, R. Scuri, Evidence in hypertensive rats of hypotensive effect after mandibular extension. Physiol. Rep. 6, e13911 (2018). https://doi.org/10.14814/phy2.13911

    Article  PubMed  PubMed Central  Google Scholar 

  18. L. Sabatino, C. Costagli, D. Lapi, C. Del Seppia, G. Federighi, S. Balzan, A. Colantuoni, G. Iervasi, R. Scuri, Renin-angiotensin system responds to prolonged hypotensive effect induced by mandibular extension in spontaneously hypertensive rats. Front. Physiol. 9, 1613 (2018). https://doi.org/10.3389/fphys.2018.01613

    Article  PubMed  PubMed Central  Google Scholar 

  19. D. Lapi, A. Colantuoni, C. Del Seppia, S. Ghione, D. Tonlorenzi, M. Brunelli, R. Scuri, Persistent effects after trigeminal nerve proprioceptive stimulation by mandibular extension on rat blood pressure, heart rate and pial microcirculation. Arch. Ital. Biol. 151, 11–23 (2013). https://doi.org/10.4449/aib.v151i1.1470

    Article  CAS  PubMed  Google Scholar 

  20. D. Lapi, M. Varanini, A. Colantuoni, C. Del Seppia, S. Ghione, E. Fommei, R. Scuri, Repeated mandibular extension in rat: a procedure to modulate the cerebral arteriolar tone. Front Physiol. 8, 625 (2017). https://doi.org/10.3389/fphys.2017.00625

    Article  PubMed  PubMed Central  Google Scholar 

  21. L. Sabatino, V. Lubrano, S. Balzan, C. Kusmic, S. Del Turco, G. Iervasi, Thyroid hormone deiodinases DIO1, DIO2, and DIO3 are expressed in human endothelial dermal microvascular line: effects of thyroid hormones. Mol. Cell. Biochem. 399, 87–94 (2015). https://doi.org/10.1007/s11010-014-2235-8

    Article  CAS  PubMed  Google Scholar 

  22. Y.Y. Liu, G.A. Brent, Thyroid hormone and the brain: mechanisms of action in development and role in protection and promotion of recovery after brain injury. Pharmacol. Ther. 186, 176–185 (2018). https://doi.org/10.1016/j.pharmthera.2018.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O.M. Ahmed, A.W. El-Gareib, A.M. El-Bakry, S.M. Abd El-Tawab, R.G. Ahmed, Thyroid hormones states and brain development interactions. Int. J. Dev. Neurosci. 26, 147–209 (2008). https://doi.org/10.1016/j.ijdevneu.2007.09.011

    Article  CAS  PubMed  Google Scholar 

  24. A.C. Bianco, A. Dumitrescu, B. Gereben, M.O. Ribeiro, T.L. Fonseca, G.W. Fernandes, B.M.L.C. Bocco, Paradigms of dynamic control of thyroid hormone signaling. Endocr. Rev. 40, 1000–1047 (2019). https://doi.org/10.1210/er.2018-00275

    Article  PubMed  PubMed Central  Google Scholar 

  25. D. Lapi, G. Federighi, M.P. Fantozzi, C. Del Seppia, S. Ghione, A. Colantuoni, R. Scuri, Trigeminocardiac reflex by mandibular extension on rat pial microcirculation: role of nitric oxide. PLoS One 9, e115767 (2014). https://doi.org/10.1371/journal.pone.0115767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M.M. Kaplan, K.A. Yaskoski, Maturational patterns of iodothyronine phenolic and tyrosyl ring deiodinase activities in rat cerebrum, cerebellum, and hypothalamus. J. Clin. Investig. 67, 1208–1214 (1981). https://doi.org/10.1172/jci110136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Bárez-López, A. Guadaño-Ferraz, Thyroid hormone availability and action during brain development in rodents. Front. Cell Neurosci. 11, 240 (2017). https://doi.org/10.3389/fncel.2017.00240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O. Gumieniak, T.S. Perlstein, J.S. Williams, P.N. Hopkins, N.J. Brown, B.A. Raby, G.H. Willimas, Ala92 type 2 deiodinase allele increases risk for the development of hypertension. Hypertension 49, 461–466 (2007). https://doi.org/10.1161/01.HYP.0000256295.72185.fd

    Article  CAS  PubMed  Google Scholar 

  29. F. Brandt, A. Green, L. Hegedüs, T.H. Brix, A critical review and meta-analysis of the association between overt hyperthyroidism and mortality. Eur. J. Endocrinol. 165, 491–497 (2011). https://doi.org/10.1530/EJE-11-0299D.H

    Article  CAS  PubMed  Google Scholar 

  30. A. Marsili, A.M. Zavacki, J.W. Harney, P.R. Larsen, Physiological role and regulation of iodothyronine deiodinases: a 2011 update. J. Endocrinol. Investig. 34, 395–407 (2011). https://doi.org/10.1007/BF03347465

    Article  CAS  Google Scholar 

  31. A.R. Drigo, A.C. Bianco, Type 2 deiodinase at the crossroads of thyroid hormone action. Int. J. Biochem. Cell Biol. 43, 1432–1441 (2011). https://doi.org/10.1016/j.biocel.2011.05.016

    Article  CAS  Google Scholar 

  32. A.L. Maia, I.M. Goemann, E.L. Meyer, S.M. Wajner, Type 1 iodothyronine deiodinase in human physiology and disease. J. Endocrinol. 209, 283–297 (2011). https://doi.org/10.1530/JOE-10-0481

    Article  CAS  PubMed  Google Scholar 

  33. A. Hernandez, J.P. Stohn, The Type 3 Deiodinase: Epigenetic Control of Brain Thyroid Hormone Action and Neurological Function. Int. J. Mol. Sci. 19, 1804 (2018). https://doi.org/10.3390/ijms19061804

    Article  CAS  PubMed Central  Google Scholar 

  34. M.E. Martinez, M. Charalambous, A. Saferali, S. Fiering, A.K. Naumova, D. St Germain, A.C. Ferguson, A. Hernandez, Genomic imprinting variations in the mouse type 3 deiodinase gene between tissues and brain regions. Mol. Endocrinol. 28, 1875–1886 (2018). https://doi.org/10.1210/me.2014-1210

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Sabatino.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabatino, L., Federighi, G., Del Seppia, C. et al. Thyroid hormone deiodinases response in brain of spontaneausly hypertensive rats after hypotensive effects induced by mandibular extension. Endocrine 74, 100–107 (2021). https://doi.org/10.1007/s12020-021-02684-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02684-3

Keywords

Navigation