Skip to main content

Advertisement

Log in

Urine steroid profile as a new promising tool for the evaluation of adrenal tumors. Literature review

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

To review the literature assessing the diagnostic performance of urinary steroid profiling (USP) by high-performance liquid chromatography (LC–MS) or gas chromatography (GC) coupled to mass spectrometry (MS) in the evaluation of adrenal lesions, both in terms of functionality and malignancy.

Results

The evaluation of adrenal incidentalomas (AI) aims to rule out malignancy and hormone excess. Current diagnostic protocols have several limitations and include time consuming and relatively complicated multi-step processes in most cases. On the contrary, USP by LC–MS/MS or LC-GC/MS offer an easy, comprehensive and non-invasive assessment of adrenal steroid secretion. USP complements current workups used in the evaluation of AIs by improving our ability to identify malignancy and/or autonomous hormone secretion.

Conclusions

Urine steroid profiling by LC–MS/MS and GC–MS allows a thorough, non-invasive, assessment of adrenal steroidogenesis as a whole which complement the current evaluation of AIs, and holds a promising role in the diagnosis of autonomous cortisol secretion, primary aldosteronism, and adrenal malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M. Araujo-Castro, M.A. Sampedro Núñez, M. Marazuela, Autonomous cortisol secretion in adrenal incidentalomas. Endocrine 64(1), 1–13 (2019). https://doi.org/10.1007/s12020-019-01888-y

    Article  CAS  PubMed  Google Scholar 

  2. M. Araujo-Castro, M. Iturregui Guevara, M. Calatayud Gutiérrez, P. Parra Ramírez, P. Gracia Gimeno, F.A. Hanzu et al. Practical guide on the initial evaluation, follow-up, and treatment of adrenal incidentalomas Adrenal Diseases Group of the Spanish Society of Endocrinology and Nutrition. Endocrinol. Diabetes Nutr. 67(6), 408–419 (2020). https://doi.org/10.1016/j.endinu.2020.03.002

    Article  PubMed  Google Scholar 

  3. M. Fassnacht, W. Arlt, I. Bancos, H. Dralle, J. Newell-Price, A. Sahdev et al. Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 175(2), G1–G34 (2016). https://doi.org/10.1530/EJE-16-0467

    Article  CAS  PubMed  Google Scholar 

  4. J.M. Lee, M.K. Kim, S.H. Ko, J.M. Koh, B.Y. Kim, S.W. Kim et al. Clinical guidelines for the management of adrenal incidentaloma. Endocrinol Metab (Seoul). 32(2), 200–218 (2017). https://doi.org/10.3803/EnM.2017.32.2.200

    Article  Google Scholar 

  5. M.M. Grumbach, B.M.K. Biller, G.D. Braunstein, K.K. Campbell, J. Aidan Carney, P.A. Godley et al. Management of the clinically inapparent adrenal mass (“incidentaloma”). Ann. Intern. Med. 138(5), 424–429 (2003). https://doi.org/10.7326/0003-4819-138-5-200303040-00013

    Article  PubMed  Google Scholar 

  6. A.H. Hamrahian, A.G. Ioachimescu, E.M. Remer, G. Motta-Ramirez, H. Bogabathina, H.S. Levin et al. Clinical utility of noncontrast computed tomography attenuation value (hounsfield units) to differentiate adrenal adenomas/hyperplasias from nonadenomas: Cleveland clinic experience. J. Clin. Endocrinol. Metab. 90(2), 871–877 (2005). https://doi.org/10.1210/jc.2004-1627

    Article  CAS  PubMed  Google Scholar 

  7. T.J. Cawood, P.J. Hunt, D. O’Shea, D. Cole, S. Soule, Recommended evaluation of adrenal incidentalomas is costly, has high false-positive rates and confers a risk of fatal cancer that is similar to the risk of the adrenal lesion becoming malignant; time for a rethink?. Eur. J. Endocrinol. 161(4), 513–527 (2009). https://doi.org/10.1530/EJE-09-0234

    Article  CAS  PubMed  Google Scholar 

  8. J.W. Funder, R.M. Carey, F. Mantero, M.H. Murad, M. Reincke, H. Shibata et al. The management of primary aldosteronism: Case detection, diagnosis, and treatment: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 101(5), 1889–1916 (2016). https://doi.org/10.1210/jc.2015-4061

    Article  CAS  PubMed  Google Scholar 

  9. E. Fischer, F. Beuschlein, M. Bidlingmaier, M. Reincke, Commentary on the Endocrine Society Practice Guidelines: Consequences of adjustment of antihypertensive medication in screening of primary aldosteronism. Rev. Endocr. Metab. Disord. 12(1), 43–48 (2011). https://doi.org/10.1007/s11154-011-9163-7

    Article  CAS  PubMed  Google Scholar 

  10. I. Chiodini, Diagnosis and treatment of subclinical hypercortisolism. J. Clin. Endocrinol. Metab. 96(5), 1223–1236 (2011). https://doi.org/10.1210/jc.2010-2722

    Article  CAS  PubMed  Google Scholar 

  11. A.A. Gheorghisan-galateanu, M. Carsote, A. Valea, Incidentaloma: from general practice to specific endocrine frame. J. Pak. Med. Assoc. 67(6), 917–922 (2017)

    PubMed  Google Scholar 

  12. J.W. Funder, R.M. Carey, C. Fardella, C.E. Gomez-Sanchez, F. Mantero, M. Stowasser et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 93(9), 3266–3281 (2008). https://doi.org/10.1210/jc.2008-0104

    Article  CAS  PubMed  Google Scholar 

  13. M. Peppa, E. Boutati, C. Koliaki, N. Papaefstathiou, E. Garoflos, T. Economopoulos et al. Insulin resistance and metabolic syndrome in patients with nonfunctioning adrenal incidentalomas: a cause-effect relationship? Metabolism 59(10), 1435–1441 (2010). https://doi.org/10.1016/j.metabol.2010.01.007

    Article  CAS  PubMed  Google Scholar 

  14. T.M.A. Kerkhofs, M.N. Kerstens, I.P. Kema, T.P. Willems, H.R. Haak, Diagnostic value of urinary steroid profiling in the evaluation of adrenal tumors. Horm. Cancer 6(4), 168–175 (2015). https://doi.org/10.1007/s12672-015-0224-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. W. Arlt, M. Biehl, A.E. Taylor, S. Hahner, R. Libé, B.A. Hughes et al. Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors. J. Clin. Endocrinol. Metab. 96(12), 3775–3784 (2011). https://doi.org/10.1210/jc.2011-1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. L.I. Velikanova, Z.R. Shafigullina, A.A. Lisitsin, N.V. Vorokhobina, K. Grigoryan, E.A. Kukhianidze et al. Different types of urinary steroid profiling obtained by high-performance liquid chromatography and gas chromatography-mass spectrometry in patients with adrenocortical carcinoma. Horm. Cancer 7(5-6), 327–335 (2016). https://doi.org/10.1007/s12672-016-0267-0

    Article  CAS  PubMed  Google Scholar 

  17. Z.R. Shafigullina, L.I. Velikanova, N.V. Vorokhobina, S.B. Shustov, A.A. Lisitsin, E.V. Malevanaia et al. Urinary steroid profiling by gas chromatography mass spectrometry: Early features of malignancy in patients with adrenal incidentalomas. Steroids 135, 31–35 (2018). https://doi.org/10.1016/j.steroids.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  18. V. Chortis, I. Bancos, T. Nijman, L.C. Gilligan, A.E. Taylor, C.L. Ronchi et al. Urine steroid metabolomics as a novel tool for detection of recurrent adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 105(3), e307–e318 (2020). https://doi.org/10.1210/clinem/dgz141

    Article  Google Scholar 

  19. A. Khorram-Manesh, H. Ahlman, S. Jansson, B. Wängberg, O. Nilsson, C.E. Jakobsson et al. Adrenocortical carcimona: surgery and mitotane for treatment and steroid profiles for follow-up. World J. Surg. 22(6), 605–611 (1998). https://doi.org/10.1007/s002689900442.

    Article  CAS  PubMed  Google Scholar 

  20. A. Kotłowska, E. Maliński, K. Sworczak, J. Kumirska, P. Stepnowski, The urinary steroid profile in patients diagnosed with adrenal incidentaloma. Clin. Biochem. 42(6), 448–454 (2009). https://doi.org/10.1016/j.clinbiochem.2008.12.027

    Article  CAS  PubMed  Google Scholar 

  21. A. Kotłowska, K. Sworczak, P. Stepnowski, Urine metabolomics analysis for adrenal incidentaloma activity detection and biomarker discovery. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 879(5–6), 359–363 (2011)

    Article  Google Scholar 

  22. F. Holler, D.A. Heinrich, C. Adolf, B. Lechner, M. Bidlingmaier, G. Eisenhofer et al. Steroid profiling and immunohistochemistry for subtyping and outcome prediction in primary aldosteronism—a review. Curr. Hypertens. Rep. 21(10), 77 (2019). https://doi.org/10.1007/s11906-019-0985-0

    Article  CAS  PubMed  Google Scholar 

  23. W. Arlt, K. Lang, A.J. Sitch, A.S. Dietz, Y. Rhayem, I. Bancos et al. Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight 2(8), e93136 (2017). https://doi.org/10.1172/jci.insight.93136

    Article  PubMed Central  Google Scholar 

  24. L.S. Meyer, X. Wang, E. Sušnik, J. Burrello, A. Burrello, I. Castellano et al. Immunohistopathology and steroid profiles associated with biochemical outcomes after adrenalectomy for unilateral primary aldosteronism. Hypertension 72(3), 650–657 (2018). https://doi.org/10.1161/HYPERTENSIONAHA.118.11465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. P. Mulatero, S.M. Di Cella, S. Monticone, D. Schiavone, M. Manzo, G. Mengozzi et al. 18-hydroxycorticosterone, 18-hydroxycortisol, and 18-oxocortisol in the diagnosis of primary aldosteronism and its subtypes. J. Clin. Endocrinol. Metab. 97(3), 881–889 (2012). https://doi.org/10.1210/jc.2011-2384

    Article  CAS  PubMed  Google Scholar 

  26. C. Rossi, I. Cicalini, S. Verrocchio, G. Di Dalmazi, L. Federici, I. Bucci, The potential of steroid profiling by mass spectrometry in the management of adrenocortical carcinoma. Biomedicines 8(9), 314 (2020). https://doi.org/10.3390/biomedicines8090314

    Article  CAS  PubMed Central  Google Scholar 

  27. G. Casals, F.A. Hanzu, Cortisol measurements in Cushing’s syndrome: immunoassay or mass spectrometry? Ann. Lab. Med. 40(4), 285–296 (2020). https://doi.org/10.3343/alm.2020.40.4.285

    Article  PubMed  PubMed Central  Google Scholar 

  28. G. Aranda, M. Careaga, F.A. Hanzu, I. Patrascioiu, P. Ríos, M. Mora et al. Accuracy of immunoassay and mass spectrometry urinary free cortisol in the diagnosis of Cushing’s syndrome. Pituitary 19(5), 496–502 (2016). https://doi.org/10.1007/s11102-016-0730-5

    Article  CAS  PubMed  Google Scholar 

  29. P.C. White, Trastornos de la glándula suprarrenal suprarrenal. In: Nelson. Tratado de pediatría, pp. 2403–2420. (Elsevier, España, S.L.U. 2020)

  30. W. Arlt, P.M. Stewart, Adrenal corticosteroid biosynthesis, metabolism, and action. Endocrinol. Metab. Clin. N. Am. 34(2), 293–313 (2005). https://doi.org/10.1016/j.ecl.2005.01.002

    Article  CAS  Google Scholar 

  31. C. Shackleton, O.J. Pozo, J. Marcos, GC/MS in recent years has defined the normal and clinically disordered steroidome: will it soon be surpassed by LC/tandem MS in this role? J. Endocr. Soc. 2(8), 974–996 (2018)

    Article  CAS  Google Scholar 

  32. N. Krone, B.A. Hughes, G.G. Lavery, P.M. Stewart, W. Arlt, C.H.L. Shackleton, Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J. Steroid Biochem. Mol. Biol. 121(3–5), 496–504 (2010)

    Article  CAS  Google Scholar 

  33. C.H.L. Shackleton, Profiling steroid hormones and urinary steroids. J. Chromatogr. 379, 91–156 (1986). https://doi.org/10.1016/s0378-4347(00)80683-0

    Article  CAS  PubMed  Google Scholar 

  34. C.H.L. Shackleton, Mass spectrometry in the diagnosis of steroid-related disorders and in hypertension research. J. Steroid Biochem. Mol. Biol. 45(1-3), 127–140 (1993). https://doi.org/10.1016/0960-0760(93)90132-g

    Article  CAS  PubMed  Google Scholar 

  35. K.-H. Storbeck, L. Schiffer, E.S. Baranowski, V. Chortis, A. Prete, L. Barnard et al. Steroid metabolome analysis in disorders of adrenal steroid biosynthesis and metabolism. Endocr. Rev. 40(6), 1605–1625 (2019). https://doi.org/10.1210/er.2018-00262

    Article  PubMed  PubMed Central  Google Scholar 

  36. J.W. Honour, E. Conway, R. Hodkinson, F. Lam, The evolution of methods for urinary steroid metabolomics in clinical investigations particularly in childhood. J. Steroid Biochem. Mol. Biol. 181, 28–51 (2018). https://doi.org/10.1016/j.jsbmb.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  37. D.J. Handelsman, L. Wartofsky, Requirement for mass spectrometry sex steroid assays in the journal of clinical endocrinology and metabolism. J. Clin. Endocrinol. Metab. 98(10), 3971–3973 (2013). https://doi.org/10.1210/jc.2013-3375

    Article  CAS  PubMed  Google Scholar 

  38. D. Lopez, M.A. Luque-Fernandez, A. Steele, G.K. Adler, A. Turchin, A. Vaidya, “Nonfunctional” adrenal Tumors and the risk for incident diabetes and cardiovascular outcomes: a cohort study. Ann. Intern. Med. 165(8), 533–542 (2016). https://doi.org/10.7326/M16-0547

    Article  PubMed  PubMed Central  Google Scholar 

  39. L.K. Nieman, B.M.K.K. Biller, J.W. Findling, J. Newell-Price, M.O. Savage, P.M. Stewart et al. The diagnosis of Cushing’s Syndrome: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 93(5), 1526–1540 (2008). https://doi.org/10.1210/jc.2008-0125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. R. Gatti, G. Antonelli, M. Prearo, P. Spinella, E. Cappellin, E.F. De Palo, Cortisol assays and diagnostic laboratory procedures in human biological fluids. Clin. Biochem. 42(12), 1205–1217 (2009). https://doi.org/10.1016/j.clinbiochem.2009.04.011

    Article  CAS  PubMed  Google Scholar 

  41. A. Kotłowska, T. Puzyn, K. Sworczak, P. Stepnowski, P. Szefer, Metabolomic biomarkers in urine of cushing’s syndrome patients. Int. J. Mol. Sci. 18(2), 1–15. (2017)

    Article  Google Scholar 

  42. J. Homoki, R. Holl, W.M. Teller, Urinary steroid profiles in Cushing’s syndrome and tumors of the adrenal cortex. Klin. Wochenschr. 65(15), 719–726 (1987). https://doi.org/10.1007/BF01736807

    Article  CAS  PubMed  Google Scholar 

  43. E. Kikuchi, H. Yanaihara, J. Nakashima, K. Homma, T. Ohigashi, H. Asakura et al. Urinary steroid profile in adrenocortical tumors. Biomed. Pharmacother. 54(1), 194s–197s (2000). https://doi.org/10.1016/s0753-3322(00)80043-8

    Article  CAS  PubMed  Google Scholar 

  44. P.M. Stewart, B.R. Walker, G. Holder, D. O’Halloran, C.H.L. Shackleton, 11 beta-Hydroxysteroid dehydrogenase activity in Cushing’s syndrome: explaining the mineralocorticoid excess state of the ectopic adrenocorticotropin syndrome. J. Clin. Endocrinol. Metab. 80(12), 3617–3620 (1995). https://doi.org/10.1210/jcem.80.12.8530609

    Article  CAS  PubMed  Google Scholar 

  45. J. Brossaud, D. Ducint, J.B. Corcuff, Urinary glucocorticoid metabolites: biomarkers to classify adrenal incidentalomas. Clin. Endocrinol. (Oxf.) 84(2), 236–43. (2016)

    Article  CAS  Google Scholar 

  46. J.M. Hines, I. Bancos, C. Bancos, R.D. Singh, A.V. Avula, W.F. Young et al. High-resolution, accurate-mass (HRAM) mass spectrometry urine steroid profiling in the diagnosis of adrenal disorders. Clin. Chem. 63(12), 1824–1835 (2017). https://doi.org/10.1373/clinchem.2017.271106

    Article  CAS  PubMed  Google Scholar 

  47. F. Ceccato, G. Antonelli, M. Barbot, M. Zilio, L. Mazzai, R. Gatti et al. The diagnostic performance of urinary free cortisol is better than the cortisol: Cortisone ratio in detecting de novo Cushing’s Syndrome: The use of a LC-MS/MS method in routine clinical practice. Eur J Endocrinol 171(1), 1–7 (2014). https://doi.org/10.1530/EJE-14-0061

    Article  CAS  PubMed  Google Scholar 

  48. Araujo-castro M. Treatment of primary hyperaldosteronism. Med. Clin. (Barc). S0025-7753(20)30323-7,(2020). https://doi.org/10.1016/j.medcli.2020.04.029

  49. T. Wannachalee, A.F. Turcu, Developments in primary aldosteronism subtyping using steroid profiling. Horm. Metab. Res. 52(6), 373–378 (2020). https://doi.org/10.1055/a-1141-3526

    Article  CAS  PubMed  Google Scholar 

  50. S. Ulick, J.D. Blumenfeld, S.A. Atlas, J.Z. Wang, E.D. Vaughan, The unique steroidogenesis of the aldosteronoma in the differential diagnosis of primary aldosteronism. J. Clin. Endocrinol. Metab. 76(4), 873–878 (1993). https://doi.org/10.1210/jcem.76.4.8473399

    Article  CAS  PubMed  Google Scholar 

  51. M. Wolley, M. Thuzar, M. Stowasser, Controversies and advances in adrenal venous sampling in the diagnostic workup of primary aldosteronism. Best. Pract. Res. Clin. Endocrinol. Metab. 34(3), 101400 (2020). https://doi.org/10.1016/j.beem.2020.101400

    Article  CAS  PubMed  Google Scholar 

  52. S. Ulick, M.D. Chu, Hypersecretion of a new corticosteroid, 18-hydroxycortisol in two types of adrenocortical hypertension. Clin. Exp. Hypertens. A. 4(9-10), 1771–1777 (1982). https://doi.org/10.3109/10641968209061640

    Article  CAS  PubMed  Google Scholar 

  53. R.D. Gordon, S.M. Hamlet, T.J. Tunny, C.E. Gomez‐Sanchez, L.S. Jayasinghed̊, Distinguishing aldosterone-producing adenoma from other forms of hyperaldosteronism and lateralizing the tumour pre-operatively. Clin. Exp. Pharmacol. Physiol. 13(4), 325–328 (1986). https://doi.org/10.1111/j.1440-1681.1986.tb00357.x

    Article  CAS  PubMed  Google Scholar 

  54. J.L. Benham, M. Eldoma, B. Khokhar, D.J. Roberts, D.M. Rabi, G.A. Kline, Proportion of patients with hypertension resolution following adrenalectomy for primary aldosteronism: a systematic review and meta-analysis. J. Clin. Hypertens. (Greenwich) 18(12), 1205–1212 (2016). https://doi.org/10.1111/jch.12916

    Article  Google Scholar 

  55. M. Terzolo, A. Stigliano, I. Chiodini, P. Loli, L. Furlani, G. Arnaldi et al. AME position statement on adrenal incidentaloma. Eur. J. Endocrinol. 164(6), 851–870 (2011). https://doi.org/10.1530/EJE-10-1147

    Article  CAS  PubMed  Google Scholar 

  56. S. Minowada, K. Kinoshita, M. Hara, K. Isurugi, T. Uchikawa, T. Niijima, Measurement of urinary steroid profile in patients with adrenal tumor as a screening method for carcinoma. Endocrinol. Jpn. 32(1), 29–37 (1985). https://doi.org/10.1507/endocrj1954.32.29

    Article  CAS  PubMed  Google Scholar 

  57. S. Grondal, B. Eriksson, L. Hagenas, S. Werner, T. Curstedt, Steroid profile in urine: a useful tool in the diagnosis and follow up of adrenocortical carcinoma. Acta Endocrinol. (Copenh) 122(5), 656–663 (1990). https://doi.org/10.1530/acta.0.1220656

    Article  CAS  Google Scholar 

  58. I. Bancos, W. Arlt, Diagnosis of a malignant adrenal mass: the role of urinary steroid metabolite profiling. Curr. Opin. Endocrinol. Diabetes Obes. 24(3), 200–207 (2017). https://doi.org/10.1097/MED.0000000000000333

    Article  CAS  PubMed  Google Scholar 

  59. S.C. Tiu, A.O.K. Chan, N.F. Taylor, C.Y. Lee, P.Y. Loung, C.H. Choi et al. Use of urinary steroid profiling for diagnosing and monitoring adrenocortical tumours. Hong Kong Med. J. 15(6), 463–470 (2009)

    CAS  PubMed  Google Scholar 

  60. I. Bancos, A.E. Taylor, V. Chortis, A.J. Sitch, C. Jenkinson, C.J. Davidge-Pitts et al. Urine steroid metabolomics for the differential diagnosis of adrenal incidentalomas in the EURINE-ACT study: a prospective test validation study. Lancet Diabetes Endocrinol. 8(9), 773–781 (2020). https://doi.org/10.1016/S2213-8587(20)30218-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. H. Sasano, T. Suzuki, H. Nagura, T. Nishikawa, Steroidogenesis in human adrenocortical carcinoma: Biochemical activities, immunohistochemistry, and in situ hybridization of steroidogenic enzymes and histopathologic study in nine cases. Hum. Pathol. 24(4), 397–404 (1993). https://doi.org/10.1016/0046-8177(93)90088-x

    Article  CAS  PubMed  Google Scholar 

  62. V. Chortis, A.E. Taylor, P. Schneider, J.W. Tomlinson, B.A. Hughes, D.M. O’Neil et al. Mitotane therapy in adrenocortical cancer induces CYP3A4 and inhibits 5α-reductase, explaining the need for personalized glucocorticoid and androgen replacement. J. Clin. Endocrinol. Metab. 98(1), 161–171 (2013). https://doi.org/10.1210/jc.2012-2851

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Supported by Grants “BECA SENDIMAD de Ayuda a la Investigación en Endocrinología, Nutrición y Diabetes 2019”, Sociedad de Endocrinología, Nutrición y Diabetes de Madrid, Madrid, Spain, and “Convocatoria intramural de ayudas a proyectos de investigación de investigadores noveles, investigadores clínicos asociados y/o grupos emergentes del Hospital Universitario Ramón y Cajal”, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marta Araujo-Castro or Gregori Casals.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo-Castro, M., Valderrábano, P., Escobar-Morreale, H.F. et al. Urine steroid profile as a new promising tool for the evaluation of adrenal tumors. Literature review. Endocrine 72, 40–48 (2021). https://doi.org/10.1007/s12020-020-02544-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02544-6

Keywords

Navigation