Skip to main content
Log in

Involvement of HMGB1 in vemurafenib resistance in thyroid cancer cells harboring BRAF (V600E) mutation by regulating excessive autophagy

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Thyroid carcinoma is the most frequent endocrine malignancy with high occurrence of BRAFV600E mutations. Though targeted therapy by vemurafenib, a specific inhibitor for BRAFV600E, has achieved great advance in therapeutic landscape, resistance occurrence is still a clinical challenge. Here, we sought to elucidate the function of high mobility group box 1 (HMGB1) in vemurafenib resistance in thyroid cancer harboring BRAF mutation.

Methods

The expression of HMGB1 in BRAF-mutant BCPAP and BRAF-wild CAL-62 cells were determined by qRT-PCR and western. Then, BCPAP cells were transfected with recombinant HMGB1 plasmids, and vemurafenib-resistant BCPAP-R cells were treated with si-HMGB1. The efficacy of HMGB1 on vemurafenib resistance was evaluated by detecting cell viability, apoptosis, and caspase-3 activity. In addition, the involvement of autophagy pathway was investigated.

Results

Lower expression of HMGB1 was observed in BRAF-mutant BCPAP cells that had high sensitivity to vemurafenib. Overexpression of HMGB1 attenuated BCPAP cell sensitivity to vemurafenib by increasing cell viability and decreasing cell apoptosis and caspase-3 activity. Intriguingly, higher expression of HMGB1 was confirmed in vemurafenib-resistant BCPAP-R cells. Moreover, knockdown of HMGB1 sensitized BCPAP-R cells to vemurafenib resistance. Mechanistically, vemurafenib exposure induced autophagy by enhancing LC3II, Beclin-1 expression, and reducing autophagy substrate p62 expression. Importantly, targeting HMGB1 suppressed vemurafenib-induced autophagy. Blocking autophagy pathway with its inhibitor 3-MA offset BCPAP-R cell resistance to vemurafenib.

Conclusions

These findings highlight that HMGB1-mediated autophagy may account for vemurafenib resistance in thyroid cancer harboring BRAF mutation, implying a promising approach to overcome vemurafenib resistance in vemurafenib-mutant thyroid carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. H. Lim, S.S. Devesa, J.A. Sosa, D. Check, C.M. Kitahara, Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. Jama 317(13), 1338–1348 (2017). https://doi.org/10.1001/jama.2017.2719

    Article  PubMed  Google Scholar 

  2. H.J. Song, Z.L. Qiu, C.T. Shen, W.J. Wei, Q.Y. Luo, Pulmonary metastases in differentiated thyroid cancer: efficacy of radioiodine therapy and prognostic factors. Eu. J. Endocrinol. 173(3), 399–408 (2015). https://doi.org/10.1530/EJE-15-0296

    Article  CAS  Google Scholar 

  3. J. Iva, G. Filip, B. Martin, Z. Pavel, C. Jan, The significance of BRAFV600E mutation in thyroid cancer in terms of novel targeted therapies—overview of current knowledge and studies. Klinicka onkologie: casopis Ceske a Slovenske onkologicke spolecnosti 31(5), 339–344 (2018). https://doi.org/10.14735/amko2018339

  4. M. Xing, BRAF mutation in thyroid cancer. Endocrine-Rel. Cancer 12(2), 245–262 (2005). https://doi.org/10.1677/erc.1.0978

    Article  CAS  Google Scholar 

  5. C. Lupi, R. Giannini, C. Ugolini, A. Proietti, P. Berti, M. Minuto, G. Materazzi, R. Elisei, M. Santoro, P. Miccoli, F. Basolo, Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J. Clin. Endocrinol. Metabol. 92(11), 4085–4090 (2007). https://doi.org/10.1210/jc.2007-1179

    Article  CAS  Google Scholar 

  6. E. Takacsova, R. Kralik, I. Waczulikova, K. Zavodna, J. Kausitz, A different prognostic value of BRAFV600E mutation positivity in various age groups of patients with papillary thyroid cancer. Neoplasma 64(1), 156–164 (2017). https://doi.org/10.4149/neo_2017_120

    Article  CAS  PubMed  Google Scholar 

  7. P.B. Chapman, C. Robert, J. Larkin, J.B. Haanen, A. Ribas, D. Hogg, O. Hamid, P.A. Ascierto, A. Testori, P.C. Lorigan, R. Dummer, J.A. Sosman, K.T. Flaherty, I. Chang, S. Coleman, I. Caro, A. Hauschild, G.A. McArthur, Vemurafenib in patients with BRAFV600 mutation-positive metastatic melanoma: final overall survival results of the randomized BRIM-3 study. Annals Oncol. 28(10), 2581–2587 (2017). https://doi.org/10.1093/annonc/mdx339

    Article  CAS  Google Scholar 

  8. W.J. Wei, Z.K. Sun, C.T. Shen, H.J. Song, X.Y. Zhang, Z.L. Qiu, Q.Y. Luo, Obatoclax and LY3009120 efficiently overcome vemurafenib resistance in differentiated thyroid cancer. Theranostics 7(4), 987–1001 (2017). https://doi.org/10.7150/thno.17322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. C. Garbe, T.K. Eigentler, Vemurafenib. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer 211, 77–89 (2018). https://doi.org/10.1007/978-3-319-91442-8_6

    Article  CAS  PubMed  Google Scholar 

  10. L. Yang, Y. Yu, R. Kang, M. Yang, M. Xie, Z. Wang, D. Tang, M. Zhao, L. Liu, H. Zhang, L. Cao, Up-regulated autophagy by endogenous high mobility group box-1 promotes chemoresistance in leukemia cells. Leukemia Lymphoma 53(2), 315–322 (2012). https://doi.org/10.3109/10428194.2011.616962

    Article  CAS  PubMed  Google Scholar 

  11. Q. Li, J. Li, T. Wen, W. Zeng, C. Peng, S. Yan, J. Tan, K. Yang, S. Liu, A. Guo, C. Zhang, J. Su, M. Jiang, Z. Liu, H. Zhou, X. Chen, Overexpression of HMGB1 in melanoma predicts patient survival and suppression of HMGB1 induces cell cycle arrest and senescence in association with p21 (Waf1/Cip1) up-regulation via a p53-independent, Sp1-dependent pathway. Oncotarget 5(15), 6387–6403 (2014). https://doi.org/10.18632/oncotarget.2201

    Article  PubMed  PubMed Central  Google Scholar 

  12. M.P. Singh, H.J. Cho, J.T. Kim, K.E. Baek, H.G. Lee, S.C. Kang, Morin hydrate reverses cisplatin resistance by impairing PARP1/HMGB1-dependent autophagy in hepatocellular carcinoma. Cancers 11(7) (2019). https://doi.org/10.3390/cancers11070986

  13. T. Xu, L. Jiang, Z. Wang, The progression of HMGB1-induced autophagy in cancer biology. OncoTargets Therapy 12, 365–377 (2019). https://doi.org/10.2147/OTT.S185876

    Article  CAS  PubMed  Google Scholar 

  14. X. Guan, P. Wang, J. Chi, S. Zhao, F. Wang, Relationships of BRAF mutation and HMGB1 to papillary thyroid carcinoma. Biochem. Biophys. Res. Commun. 486(4), 898–903 (2017). https://doi.org/10.1016/j.bbrc.2017.03.117

    Article  CAS  PubMed  Google Scholar 

  15. W. Wang, H. Kang, Y. Zhao, I. Min, B. Wyrwas, M. Moore, L. Teng, R. Zarnegar, X. Jiang, T.J. Fahey 3rd, Targeting autophagy sensitizes BRAF-mutant thyroid cancer to Vemurafenib. J. Clin. Endocrinol. Metabol. 102(2), 634–643 (2017). https://doi.org/10.1210/jc.2016-1999

    Article  Google Scholar 

  16. E.K. Hanly, R.B. Bednarczyk, N.Y. Tuli, A.L. Moscatello, H.D. Halicka, J. Li, J. Geliebter, Z. Darzynkiewicz, R.K. Tiwari, mTOR inhibitors sensitize thyroid cancer cells to cytotoxic effect of vemurafenib. Oncotarget 6(37), 39702–39713 (2015). https://doi.org/10.18632/oncotarget.4052

    Article  PubMed  PubMed Central  Google Scholar 

  17. D.M. Hyman, I. Puzanov, V. Subbiah, J.E. Faris, I. Chau, J.Y. Blay, J. Wolf, N.S. Raje, E.L. Diamond, A. Hollebecque, R. Gervais, M.E. Elez-Fernandez, A. Italiano, R.D. Hofheinz, M. Hidalgo, E. Chan, M. Schuler, S.F. Lasserre, M. Makrutzki, F. Sirzen, M.L. Veronese, J. Tabernero, J. Baselga, Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl. J. Med. 373(8), 726–736 (2015). https://doi.org/10.1056/NEJMoa1502309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. T. Wu, W. Zhang, G. Yang, H. Li, Q. Chen, R. Song, L. Zhao, HMGB1 overexpression as a prognostic factor for survival in cancer: a meta-analysis and systematic review. Oncotarget 7(31), 50417–50427 (2016). https://doi.org/10.18632/oncotarget.10413

    Article  PubMed  PubMed Central  Google Scholar 

  19. S. Mardente, E. Mari, F. Consorti, C. Di Gioia, R. Negri, M. Etna, A. Zicari, A. Antonaci, HMGB1 induces the overexpression of miR-222 and miR-221 and increases growth and motility in papillary thyroid cancer cells. Oncol. Rep. 28(6), 2285–2289 (2012). https://doi.org/10.3892/or.2012.2058

    Article  CAS  PubMed  Google Scholar 

  20. Y.X. Zhang, Y.Q. Yuan, X.Q. Zhang, D.L. Huang, Y.Y. Wei, J.G. Yang, HMGB1-mediated autophagy confers resistance to gemcitabine in hormone-independent prostate cancer cells. Oncol. Lett. 14(5), 6285–6290 (2017). https://doi.org/10.3892/ol.2017.6965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Xia, X. Yu, X. Song, G. Li, X. Mao, Y. Zhang, Inhibiting the cytoplasmic location of HMGB1 reverses cisplatin resistance in human cervical cancer cells. Mol. Med. Rep. 15(1), 488–494 (2017). https://doi.org/10.3892/mmr.2016.6003

    Article  CAS  PubMed  Google Scholar 

  22. Y. Shi, W. Gong, L. Lu, Y. Wang, J. Ren, Upregulation of miR-129-5p increases the sensitivity to Taxol through inhibiting HMGB1-mediated cell autophagy in breast cancer MCF-7 cells. Braz. J. Med. Biol. Res. 52(11), e8657 (2019). https://doi.org/10.1590/1414-431X20198657

    Article  PubMed  PubMed Central  Google Scholar 

  23. D. Tang, R. Kang, K.M. Livesey, C.W. Cheh, A. Farkas, P. Loughran, G. Hoppe, M.E. Bianchi, K.J. Tracey, H.J. Zeh 3rd, M.T. Lotze, Endogenous HMGB1 regulates autophagy. J. Cell Biol. 190(5), 881–892 (2010). https://doi.org/10.1083/jcb.200911078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. R. Amaravadi, A.C. Kimmelman, E. White, Recent insights into the function of autophagy in cancer. Genes Dev. 30(17), 1913–1930 (2016). https://doi.org/10.1101/gad.287524.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Y.J. Li, Y.H. Lei, N. Yao, C.R. Wang, N. Hu, W.C. Ye, D.M. Zhang, Z.S. Chen, Autophagy and multidrug resistance in cancer. Chin. J. Cancer 36(1), 52 (2017). https://doi.org/10.1186/s40880-017-0219-2

    Article  PubMed  PubMed Central  Google Scholar 

  26. J.M. Mulcahy Levy, S. Zahedi, A.M. Griesinger, A. Morin, K.D. Davies, D.L. Aisner, B.K. Kleinschmidt-DeMasters, B.E. Fitzwalter, M.L. Goodall, J. Thorburn, V. Amani, A.M. Donson, D.K. Birks, D.M. Mirsky, T.C. Hankinson, M.H. Handler, A.L. Green, R. Vibhakar, N.K. Foreman, A. Thorburn, Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. eLife 6 (2017). https://doi.org/10.7554/eLife.19671

  27. H.K. Byeon, H.J. Na, Y.J. Yang, S. Ko, S.O. Yoon, M. Ku, J. Yang, J.W. Kim, M.J. Ban, J.H. Kim, D.H. Kim, J.M. Kim, E.C. Choi, C.H. Kim, J.H. Yoon, Y.W. Koh, Acquired resistance to BRAF inhibition induces epithelial-to-mesenchymal transition in BRAF (V600E) mutant thyroid cancer by c-Met-mediated AKT activation. Oncotarget 8(1), 596–609 (2017). https://doi.org/10.18632/oncotarget.13480

    Article  PubMed  Google Scholar 

  28. H. Li, J. Li, G. Zhang, Q. Da, L. Chen, S. Yu, Q. Zhou, Z. Weng, Z. Xin, L. Shi, L. Ma, A. Huang, S. Qi, Y. Lu, HMGB1-induced p62 overexpression promotes snail-mediated epithelial-mesenchymal transition in glioblastoma cells via the degradation of GSK-3beta. Theranostics 9(7), 1909–1922 (2019). https://doi.org/10.7150/thno.30578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. H.Y. Chang, S.Y. Chen, C.H. Wu, C.C. Lu, G.C. Yen, Glycyrrhizin attenuates the process of epithelial-to-mesenchymal transition by modulating HMGB1 initiated novel signaling pathway in prostate cancer cells. J. Agric. Food Chem. 67(12), 3323–3332 (2019). https://doi.org/10.1021/acs.jafc.9b00251

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author contributions

X.H. and Y.X. designed this article. LR determined cell viability and apoptosis. L.R. constructed BCPAP-R cells. L.P.W. and X.T.N. performed qRT-PCR and western. N.L. carried out HMGB1 knockdown and overexpression. X.H. and Y.X. analyzed the involvement of autophagy in cell resistance. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Huang or Yang Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Run, L., Wang, L., Nong, X. et al. Involvement of HMGB1 in vemurafenib resistance in thyroid cancer cells harboring BRAF (V600E) mutation by regulating excessive autophagy. Endocrine 71, 418–426 (2021). https://doi.org/10.1007/s12020-020-02417-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02417-y

Keywords

Navigation