Skip to main content
Log in

Transforming growth factor-β1 suppress pentraxin-3 in human orbital fibroblasts

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Transforming growth factor-β (TGF-β), recognized as a crucial factor in regulating fibrosis and tissue remodeling, plays a role in thyroid-associated ophthalmopathy (TAO). Pentraxin-3 (PTX3), a member of pentraxins, was recently implicated in many autoimmune and fibrotic diseases. Thus, we hypothesize if there is a potential correlation between TGF-β and PTX3 in orbital fibroblasts (OFs).

Methods

Several strains of OFs obtained from patients with TAO (n = 8) and healthy donors (n = 3) were established as the study model. Recombinant TGF-β1 was exerted as an intervention and the expression of PTX3 was detected. To uncover the underlying mechanism, specific inhibitors of TGF-β and siRNA knockdown of Smads were utilized.

Results

We found that TGF-β1 can reduce PTX3 protein expression in OFs. We also demonstrated that this downregulation was mediated at a pretranslational level, and PTX3 mRNA was inhibited in a time- and concentration-dependent manner by TGF-β1. Interestingly, the basic level of PTX3 and the magnitude of suppression were not significantly different between TAO and control groups. Furthermore, the TGF-β receptor complex (type I:type II) and the Smad2/3-Smad4-dependent pathway are essential for TGF-mediated PTX3 repression.

Conclusion

These findings indicated that TGF-β1 can inhibit PTX3 expression in human OFs, which may participate in inflammation and fibrosis in patients with TAO and provide a potential target for the antifibrotic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R.S. Bahn, Graves’ ophthalmopathy. N. Engl. J. Med. 362(8), 726–738 (2010). https://doi.org/10.1056/NEJMra0905750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. Leask, D.J. Abraham, TGF-beta signaling and the fibrotic response. FASEB J. 18(7), 816–827 (2004). https://doi.org/10.1096/fj.03-1273rev

    Article  CAS  PubMed  Google Scholar 

  3. M. Morikawa, R. Derynck, K. Miyazono, TGF-beta and the TGF-beta family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect. Biol. 8(5), (2016). https://doi.org/10.1101/cshperspect.a021873

  4. E. Galgoczi, F. Jeney, A. Gazdag, A. Erdei, M. Katko, D.M. Nagy, B. Ujhelyi, Z. Steiber, F. Gyory, E. Berta, E.V. Nagy, Cell density-dependent stimulation of PAI-1 and hyaluronan synthesis by TGF-beta in orbital fibroblasts. J. Endocrinol. 229(2), 187–196 (2016). https://doi.org/10.1530/JOE-15-0524

    Article  CAS  PubMed  Google Scholar 

  5. H.S. Wang, W.H. Tung, K.T. Tang, Y.K. Wong, G.J. Huang, J.C. Wu, Y.J. Guo, C.C. Chen, TGF-beta induced hyaluronan synthesis in orbital fibroblasts involves protein kinase C betaII activation in vitro. J. Cell. Biochem. 95(2), 256–267 (2005). https://doi.org/10.1002/jcb.20405

    Article  CAS  PubMed  Google Scholar 

  6. J.S. Yoon, M.K. Chae, S.Y. Jang, S.Y. Lee, E.J. Lee, Antifibrotic effects of quercetin in primary orbital fibroblasts and orbital fat tissue cultures of Graves’ orbitopathy. Investig. Ophthalmol. Vis. Sci. 53(9), 5921–5929 (2012). https://doi.org/10.1167/iovs.12-9646

    Article  CAS  Google Scholar 

  7. C. Garlanda, B. Bottazzi, E. Magrini, A. Inforzato, A. Mantovani, PTX3, a humoral pattern recognition molecule, in innate immunity, tissue repair, and cancer. Physiol. Rev. 98(2), 623–639 (2018). https://doi.org/10.1152/physrev.00016.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. L. Alberti, L. Gilardini, A. Zulian, G. Micheletto, G. Peri, A. Doni, A. Mantovani, C. Invitti, Expression of long pentraxin PTX3 in human adipose tissue and its relation with cardiovascular risk factors. Atherosclerosis 202(2), 455–460 (2009). https://doi.org/10.1016/j.atherosclerosis.2008.05.015

    Article  CAS  PubMed  Google Scholar 

  9. N.S. Baranova, A. Inforzato, D.C. Briggs, V. Tilakaratna, J.J. Enghild, D. Thakar, C.M. Milner, A.J. Day, R.P. Richter, Incorporation of pentraxin 3 into hyaluronan matrices is tightly regulated and promotes matrix cross-linking. J. Biol. Chem. 289(44), 30481–30498 (2014). https://doi.org/10.1074/jbc.M114.568154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Y. Xiao, N. Yang, Q. Zhang, Y. Wang, S. Yang, Z. Liu, Pentraxin 3 inhibits acute renal injury-induced interstitial fibrosis through suppression of IL-6/Stat3 pathway. Inflammation 37(5), 1895–1901 (2014). https://doi.org/10.1007/s10753-014-9921-2

    Article  CAS  PubMed  Google Scholar 

  11. M. Yoshida, H. Oishi, T. Martinu, D.M. Hwang, H. Takizawa, J. Sugihara, T.D. McKee, X. Bai, Z. Guana, C. Lua, H.R. Cho, S. Juvet, M. Cypel, S. Keshavjee, M. Liu, Pentraxin 3 deficiency enhances features of chronic rejection in a mouse orthotopic lung transplantation model. Oncotarget 9(9), 8489–8501 (2018). https://doi.org/10.18632/oncotarget.23902

    Article  PubMed  PubMed Central  Google Scholar 

  12. A. Doni, T. Musso, D. Morone, A. Bastone, V. Zambelli, M. Sironi, C. Castagnoli, I. Cambieri, M. Stravalaci, F. Pasqualini, I. Laface, S. Valentino, S. Tartari, A. Ponzetta, V. Maina, S.S. Barbieri, E. Tremoli, A.L. Catapano, G.D. Norata, B. Bottazzi, C. Garlanda, A. Mantovani, An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode. J. Exp. Med. 212(6), 905–925 (2015). https://doi.org/10.1084/jem.20141268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Sorisky, D. Pardasani, A. Gagnon, T.J. Smith, Evidence of adipocyte differentiation in human orbital fibroblasts in primary culture. J. Clin. Endocrinol. Metab. 81(9), 3428–3431 (1996). https://doi.org/10.1210/jcem.81.9.8784110

    Article  CAS  PubMed  Google Scholar 

  14. H. Wang, S.J. Atkins, R. Fernando, R.L. Wei, T.J. Smith, Pentraxin-3 is a TSH-inducible protein in human fibrocytes and orbital fibroblasts. Endocrinology 156(11), 4336–4344 (2015). https://doi.org/10.1210/en.2015-1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. T. Huang, L. David, V. Mendoza, Y. Yang, M. Villarreal, K. De, L. Sun, X. Fang, F. Lopez-Casillas, J.L. Wrana, A.P. Hinck, TGF-beta signalling is mediated by two autonomously functioning TbetaRI:TbetaRII pairs. EMBO J. 30(7), 1263–1276 (2011). https://doi.org/10.1038/emboj.2011.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. R. Ravi, K.A. Noonan, V. Pham, R. Bedi, A. Zhavoronkov, I.V. Ozerov, E. Makarev, A.V. Artemov, P.T. Wysocki, R. Mehra, S. Nimmagadda, Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy. Nat Commun. 9(1), 741 (2018). https://doi.org/10.1038/s41467-017-02696-6

  17. A. Nakao, T. Imamura, S. Souchelnytskyi, M. Kawabata, A. Ishisaki, E. Oeda, K. Tamaki, J. Hanai, C.H. Heldin, K. Miyazono, P. ten Dijke, TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 16(17), 5353–5362 (1997). https://doi.org/10.1093/emboj/16.17.5353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. E. Willems, J. Cabral-Teixeira, D. Schade, W. Cai, P. Reeves, P.J. Bushway, M. Lanier, C. Walsh, T. Kirchhausen, J.C. Izpisua Belmonte, J. Cashman, M. Mercola, Small molecule-mediated TGF-beta type II receptor degradation promotes cardiomyogenesis in embryonic stem cells. Cell Stem Cell 11(2), 242–252 (2012). https://doi.org/10.1016/j.stem.2012.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. C. Dong, Z. Li, R. Alvarez Jr, X.H. Feng, P.J. Goldschmidt-Clermont, Microtubule binding to Smads may regulate TGF beta activity. Mol. Cell 5(1), 27–34 (2000). https://doi.org/10.1016/s1097-2765(00)80400-1

    Article  CAS  PubMed  Google Scholar 

  20. H. Li, H.M. Chang, Z. Shi, P.C.K. Leung, SNAIL mediates TGF-beta1-induced downregulation of pentraxin 3 expression in human granulosa cells. Endocrinology 159(4), 1644–1657 (2018). https://doi.org/10.1210/en.2017-03127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. C. Liu, H.M. Chang, Y. Yi, Y. Fang, F. Zhao, P.C.K. Leung, X. Yang, ALK4-SMAD2/3-SMAD4 signaling mediates the activin A-induced suppression of PTX3 in human granulosa-lutein cells. Mol. Cell. Endocrinol. 493, 110485 (2019). https://doi.org/10.1016/j.mce.2019.110485

    Article  CAS  PubMed  Google Scholar 

  22. L. Bai, H.M. Chang, J.C. Cheng, G. Chu, P.C.K. Leung, G. Yang, ALK2/ALK3-BMPR2/ACVR2A mediate BMP2-induced downregulation of pentraxin 3 expression in human granulosa-lutein cells. Endocrinology 158(10), 3501–3511 (2017). https://doi.org/10.1210/en.2017-00436

    Article  CAS  PubMed  Google Scholar 

  23. J. Gorka-Dynysiewicz, M. Pazgan-Simon, J. Zuwala-Jagiello, Pentraxin 3 detects clinically significant fibrosis in patients with chronic viral hepatitis C. BioMed. Res. Int. 2019, 2639248 (2019). https://doi.org/10.1155/2019/2639248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Krzanowski, K. Krzanowska, M. Gajda, P. Dumnicka, A. Dziewierz, K. Woziwodzka, J.A. Litwin, W. Sulowicz, Pentraxin 3 as a new indicator of cardiovascularrelated death in patients with advanced chronic kidney disease. Pol. Arch. Intern. Med. 127(3), 170–177 (2017). https://doi.org/10.20452/pamw.3944

    Article  PubMed  Google Scholar 

  25. P. Mou, Z. Chen, L. Jiang, J. Cheng, R. Wei, PTX3: a potential biomarker in thyroid associated ophthalmopathy. BioMed. Res. Int. 2018, 5961974 (2018). https://doi.org/10.1155/2018/5961974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. T. Planck, H. Parikh, H. Brorson, T. Martensson, P. Asman, L. Groop, B. Hallengren, M. Lantz, Gene expression in Graves’ ophthalmopathy and arm lymphedema: similarities and differences. Thyroid. 21(6), 663–674 (2011). https://doi.org/10.1089/thy.2010.0217

    Article  CAS  PubMed  Google Scholar 

  27. C.A. Harrison, P.C. Gray, S.C. Koerber, W. Fischer, W. Vale, Identification of a functional binding site for activin on the type I receptor ALK4. J. Biol. Chem. 278(23), 21129–21135 (2003). https://doi.org/10.1074/jbc.M302015200

    Article  CAS  PubMed  Google Scholar 

  28. R.J. van Geest, I.V. Sasim, H.P. Koppeschaar, R. Kalmann, S.N. Stravers, W.R. Bijlsma, M.P. Mourits, Methylprednisolone pulse therapy for patients with moderately severe Graves’ orbitopathy: a prospective, randomized, placebo-controlled study. Eur. J. Endocrinol. 158(2), 229–237 (2008). https://doi.org/10.1530/EJE-07-0558

    Article  CAS  PubMed  Google Scholar 

  29. J. Zhang, L. Koussih, L. Shan, A.J. Halayko, O. Tliba, A.S. Gounni, Glucocorticoids regulate pentraxin-3 expression in human airway smooth muscle cells. PloS One 14(8), e0220772 (2019). https://doi.org/10.1371/journal.pone.0220772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by grants from the National Natural Science Foundation of China (no. 81770959 and no. 81570885) and Shanghai Municipal Commission of Health and Family Planning (no. 201640215).

Author information

Authors and Affiliations

Authors

Contributions

J.D. and X.C. made equal contributions to this work. The study was designed by J.D., L.J., and P.M. X.C. collected the samples and data. J.D. and X.C. performed the experiments. J.D. wrote the manuscript, and R.W. approved the submitted manuscript.

Corresponding author

Correspondence to Ruili Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, J., Chen, X., Jiang, L. et al. Transforming growth factor-β1 suppress pentraxin-3 in human orbital fibroblasts. Endocrine 70, 78–84 (2020). https://doi.org/10.1007/s12020-020-02307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02307-3

Keywords

Navigation