Skip to main content

Advertisement

Log in

LncRNAs and miRs as epigenetic signatures in diabetic cardiac fibrosis: new advances and perspectives

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Diabetic cardiomyopathy (DCM) is a serious cardiac complication of diabetes, which further lead to heartfailure. It is known that diabetes-induced cardiac fibrosis is a key pathogenic factor contributing topathological changes in DCM. However, pathogenetic mechanisms underlying diabetes cardiac fibrosis arestill elusive. Recent studies have indicated that noncoding RNAs (ncRNAs) play a key role in diabetescardiac fibrosis. The increasing complexity of epigenetic regulator poses great challenges to ourconventional conceptions regarding how ncRNAs regulate diabetes cardiac fibrosis.

Methods

We searched PubMed, Web of Science, and Scopus for manuscripts published prior to April 2018 using keywords "Diabetic cardiomyopathy" AND " diabetes cardiac fibrosis " OR " noncoding RNAs " OR " longnoncoding RNAs " OR " microRNAs " OR "epigenetic". Manuscripts were collated, studied and carriedforward for discussion where appropriate.

Results

Based on the view that during diabetic cardiac fibrosis, ncRNAs are able to regulate diabetic cardiac fibrosisby targeting genes involved in epigenetic pathways. Many studies have focused on ncRNAs, an epigeneticregulator deregulating protein-coding genes in diabetic cardiac fibrosis, to identify potential therapeutictargets. Recent advances and new perspectives have found that long noncoding RNAs and microRNAs,exert their own effects on the progression of diabetic cardiac fibrosis.

Conclusion

We firstly examine the growing role of ncRNAs characteristics and ncRNAs-regulated genes involved indiabetic cardiac fibrosis. Then, we provide several possible therapeutic strategies and highlight the potentialof molecular mechanisms in which targeting epigenetic regulators are considered as an effective means of treating diabetic cardiac fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

α-SMA:

α-smooth muscle actin

AGO:

Argonaute

RAAS:

Renin–angiotensin–aldosterone system

LncRNA:

Long noncoding RNA

ECM:

Extracellular matrix

miRs:

MicroRNAs

MI:

Myocardial infarction

ncRNAs:

noncoding RNAs

MMP:

Matrix metalloproteinases

DM:

Diabetes mellitus

TRBP:

TAR RNA binding protein

DCM:

Diabetic cardiomyopathy

EndMT:

Endothelial mesenchymal transition

pre-miR:

precursor miR

TGF-β:

Transforming growth factor beta

UTRs:

untranslated regions

pri-mRNA:

primary mRNA

RNase III:

ribonuclease III

DGCR8:

DiGeorge syndrome critical region gene 8

RISC:

RNA-induced silencing complex

CFs:

cardiac fibroblasts

CTGF:

Connective tissue growth factor

piRNAs:

piwi-interacting RNAs

siRNAs:

short interfering RNAs

HG:

High glucose

IL-6:

Interleukin-6

IL-17:

Interleukin-17

LIPCAR:

Long intergenic noncoding RNA predicting cardiac remodeling

MIAT:

Myocardial infarction-associated transcript

HGF:

Hepatocyte growth factor

STZ:

streptozotocin

DUSP8:

dual specificity phosphatase 8

References

  1. Y. Shiga, M. Kuriyama, Y. Kanaya, S. Takeshima, M. Takemaru, K. Takamatsu, Y. Shimoe, Y. Fujikawa, M. Nishigaki, Serum 1,5-anhydroglucitol: risk factor of acute ischemic stroke and transient ischemic attack in well-controlled diabetes. Cerebrovasc. Dis. 44(5-6), 325–329 (2017). https://doi.org/10.1159/000481626

    Article  CAS  PubMed  Google Scholar 

  2. F. Orio, G. Muscogiuri, C. Nese, S. Palomba, S. Savastano, D. Tafuri, G. Colarieti, G. La Sala, A. Colao, B.O. Yildiz, Obesity, type 2 diabetes mellitus and cardiovascular disease risk: an uptodate in the management of polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 207, 214–219 (2016). https://doi.org/10.1016/j.ejogrb.2016.08.026

    Article  PubMed  Google Scholar 

  3. M. Afzal, S. Saleem, N. Singh, I. Kazmi, R. Khan, M.S. Nadeem, M.A. Zamzami, F.A. Al-Abbasi, F. Anwar, Evaluation of diphenhydramine in talc induced type 2 diabetes mellitus in Wistar rats. Biomed. Pharmacother. 97, 652–655 (2017). https://doi.org/10.1016/j.biopha.2017.10.085

    Article  CAS  PubMed  Google Scholar 

  4. M. Awazawa, P. Gabel, E. Tsaousidou, H. Nolte, M. Kruger, J. Schmitz, P.J. Ackermann, C. Brandt, J. Altmuller, S. Motameny, F.T. Wunderlich, J.W. Kornfeld, M. Bluher, J.C. Bruning, A microRNA screen reveals that elevated hepatic ectodysplasin A expression contributes to obesity-induced insulin resistance in skeletal muscle. Nat. Med. (2017). https://doi.org/10.1038/nm.4420

    Article  CAS  Google Scholar 

  5. D.V. Skarra, A. Hernandez-Carretero, A.J. Rivera, A.R. Anvar, V.G. Thackray, Hyperandrogenemia induced by letrozole treatment of pubertal female mice results in hyperinsulinemia prior to weight gain and insulin resistance. Endocrinology 158(9), 2988–3003 (2017). https://doi.org/10.1210/en.2016-1898

    Article  PubMed  PubMed Central  Google Scholar 

  6. L. Ernande, E. Audureau, C.L. Jellis, C. Bergerot, C. Henegar, D. Sawaki, G. Czibik, C. Volpi, F. Canoui-Poitrine, H. Thibault, J. Ternacle, P. Moulin, T.H. Marwick, G. Derumeaux, Clinical implications of echocardiographic phenotypes of patients with diabetes mellitus. J. Am. Coll. Cardiol. 70(14), 1704–1716 (2017). https://doi.org/10.1016/j.jacc.2017.07.792

    Article  PubMed  Google Scholar 

  7. D. Bai, Y. Zhang, M. Shen, Y. Sun, Q. Xia, X. Liu, H. Wang, L. Yuan, Hyperglycemia and hyperlipidemia blunts the Insulin-Inpp5f negative feedback loop in the diabetic heart. Sci. Rep. 6, 22068 (2016). https://doi.org/10.1038/srep22068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. Sharma, B.G. Demissei, J. Tromp, H.L. Hillege, J.G. Cleland, C.M. O’Connor, M. Metra, P. Ponikowski, J.R. Teerlink, B.A. Davison, M.M. Givertz, D.M. Bloomfield, H. Dittrich, D.J. van Veldhuisen, G. Cotter, J.A. Ezekowitz, M.A.F. Khan, A.A. Voors, A network analysis to compare biomarker profiles in patients with and without diabetes mellitus in acute heart failure. Eur. J. Heart Fail. 19(10), 1310–1320 (2017). https://doi.org/10.1002/ejhf.912

    Article  CAS  PubMed  Google Scholar 

  9. S.F. Mohammed, S. Hussain, S.A. Mirzoyev, W.D. Edwards, J.J. Maleszewski, M.M. Redfield, Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 131(6), 550–559 (2015). https://doi.org/10.1161/CIRCULATIONAHA.114.009625

    Article  PubMed  Google Scholar 

  10. X. Zhang, L. Pan, K. Yang, Y. Fu, Y. Liu, J. Chi, S. Hong, X. Ma, X. Yin, H3 relaxin protects against myocardial injury in experimental diabetic cardiomyopathy by inhibiting myocardial apoptosis, fibrosis and inflammation. Cell. Physiol. Biochem. 43(4), 1311–1324 (2017). https://doi.org/10.1159/000481843

    Article  CAS  PubMed  Google Scholar 

  11. Y. Bulani, S.S. Sharma, Argatroban attenuates diabetic cardiomyopathy in rats by reducing fibrosis, inflammation, apoptosis, and protease-activated receptor expression. Cardiovasc Drugs Ther. (2017). https://doi.org/10.1007/s10557-017-6732-3

    Article  CAS  Google Scholar 

  12. Y. Ding, X. Sun, P.F. Shan, MicroRNAs and cardiovascular disease in diabetes mellitus. Biomed. Res. Int. 2017, 4080364 (2017). https://doi.org/10.1155/2017/4080364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Elgheznawy, L. Shi, J. Hu, I. Wittig, H. Laban, J. Pircher, A. Mann, P. Provost, V. Randriamboavonjy, I. Fleming, Dicer cleavage by calpain determines platelet microRNA levels and function in diabetes. Circ. Res. 117(2), 157–165 (2015). https://doi.org/10.1161/CIRCRESAHA.117.305784

    Article  CAS  PubMed  Google Scholar 

  14. L. Maya, F.J. Villarreal, Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis. J. Mol. Cell. Cardiol. 48(3), 524–529 (2010). https://doi.org/10.1016/j.yjmcc.2009.06.021

    Article  CAS  PubMed  Google Scholar 

  15. M. Schnelle, N. Catibog, M. Zhang, A.A. Nabeebaccus, G. Anderson, D.A. Richards, G. Sawyer, X. Zhang, K. Toischer, G. Hasenfuss, M.J. Monaghan, A.M. Shah, Echocardiographic evaluation of diastolic function in mouse models of heart disease. J. Mol. Cell. Cardiol. 114, 20–28 (2017). https://doi.org/10.1016/j.yjmcc.2017.10.006

    Article  CAS  PubMed  Google Scholar 

  16. X. Lin, P. Yang, E.A. Reece, Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis. Am. J. Obstet. Gynecol. 217(2), 216 e211–216 e213 (2017). https://doi.org/10.1016/j.ajog.2017.04.008

    Article  CAS  Google Scholar 

  17. I. Russo, N.G. Frangogiannis, Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J. Mol. Cell. Cardiol. 90, 84–93 (2016). https://doi.org/10.1016/j.yjmcc.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  18. B. Liu, A.M. Dardeer, W.E. Moody, N.C. Edwards, L.E. Hudsmith, R.P. Steeds, Normal values for myocardial deformation within the right heart measured by feature-tracking cardiovascular magnetic resonance imaging. Int. J. Cardiol. (2017). https://doi.org/10.1016/j.ijcard.2017.10.106

    Article  Google Scholar 

  19. A. Taye, M.M. Abouzied, O.M. Mohafez, Tempol ameliorates cardiac fibrosis in streptozotocin-induced diabetic rats: role of oxidative stress in diabetic cardiomyopathy. Naunyn-Schmiedeberg’s Arch. Pharmacol. 386(12), 1071–1080 (2013). https://doi.org/10.1007/s00210-013-0904-x

    Article  CAS  Google Scholar 

  20. A.V. Shinde, N.G. Frangogiannis, Fibroblasts in myocardial infarction: a role in inflammation and repair. J. Mol. Cell. Cardiol. 70, 74–82 (2014). https://doi.org/10.1016/j.yjmcc.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  21. S.D. Prabhu, N.G. Frangogiannis, The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res. 119(1), 91–112 (2016). https://doi.org/10.1161/CIRCRESAHA.116.303577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A.V. Shinde, C. Humeres, N.G. Frangogiannis, The role of alpha-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim. Biophys. Acta 1863(1), 298–309 (2017). https://doi.org/10.1016/j.bbadis.2016.11.006

    Article  CAS  Google Scholar 

  23. D.Y. Shu, F.J. Lovicu, Myofibroblast transdifferentiation: the dark force in ocular wound healing and fibrosis. Prog. Retin. Eye. Res. 60, 44–65 (2017). https://doi.org/10.1016/j.preteyeres.2017.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  24. S. Seok, Y.C. Kim, S. Byun, S. Choi, Z. Xiao, N. Iwamori, Y. Zhang, C. Wang, J. Ma, K. Ge, B. Kemper, J.K. Kemper, Fasting-induced JMJD3 histone demethylase epigenetically activates mitochondrial fatty acid beta-oxidation. The J. Clin. Invest. (2018). https://doi.org/10.1172/JCI97736

    Article  Google Scholar 

  25. X. Corso-Diaz, C. Jaeger, V. Chaitankar, A. Swaroop, Epigenetic control of gene regulation during development and disease: a view from the retina. Prog. Retinal Eye Res. (2018). https://doi.org/10.1016/j.preteyeres.2018.03.002

    Article  Google Scholar 

  26. M. Mitsiogianni, T. Amery, R. Franco, V. Zoumpourlis, A. Pappa, M.I. Panayiotidis, From chemo-prevention to epigenetic regulation: the role of isothiocyanates in skin cancer prevention. Pharmacol. Ther. (2018). https://doi.org/10.1016/j.pharmthera.2018.06.001

    Article  CAS  Google Scholar 

  27. T.J. Stevenson, Epigenetic regulation of biological rhythms: an evolutionary ancient molecular timer. Trends Genet. (2017). https://doi.org/10.1016/j.tig.2017.11.003

    Article  CAS  Google Scholar 

  28. D. Veneziano, S. Di Bella, G. Nigita, A. Lagana, A. Ferro, C.M. Croce, Noncoding RNA: current deep sequencing data analysis approaches and challenges. Hum. Mutat. 37(12), 1283–1298 (2016). https://doi.org/10.1002/humu.23066

    Article  CAS  PubMed  Google Scholar 

  29. J. Gao, W. Xu, J. Wang, K. Wang, P. Li, The role and molecular mechanism of non-coding RNAs in pathological cardiac remodeling. Int. J. Mol. Sci. (2017). https://doi.org/10.3390/ijms18030608

    Article  Google Scholar 

  30. E.K. Herter, N. Xu Landen, Non-coding RNAs: new players in skin wound healing. Adv. Wound Care 6(3), 93–107 (2017). https://doi.org/10.1089/wound.2016.0711

    Article  Google Scholar 

  31. Y. Guo, F. Luo, Q. Liu, D. Xu, Regulatory non-coding RNAs in acute myocardial infarction. J. Cell. Mol. Med. 21(5), 1013–1023 (2017). https://doi.org/10.1111/jcmm.13032

    Article  CAS  PubMed  Google Scholar 

  32. A.S. Bayoumi, K.M. Park, Y. Wang, J.P. Teoh, T. Aonuma, Y. Tang, H. Su, N.L. Weintraub, I.M. Kim, A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes. J. Mol. Cell. Cardiol. 114, 72–82 (2017). https://doi.org/10.1016/j.yjmcc.2017.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. V. Sasidharan, S. Marepally, S.A. Elliott, S. Baid, V. Lakshmanan, N. Nayyar, D. Bansal, A. Sanchez Alvarado, P.K. Vemula, D. Palakodeti, The miR-124 family of microRNAs is crucial for regeneration of the brain and visual system in the planarian Schmidtea mediterranea. Development 144(18), 3211–3223 (2017). https://doi.org/10.1242/dev.144758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. F. Yu, K.A. Pillman, C.T. Neilsen, J. Toubia, D.M. Lawrence, A. Tsykin, M.P. Gantier, D.F. Callen, G.J. Goodall, C.P. Bracken, Naturally existing isoforms of miR-222 have distinct functions. Nucleic Acids Res. 45(19), 11371–11385 (2017). https://doi.org/10.1093/nar/gkx788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Ohno, K. Itano, Y. Harada, K. Asada, K. Oikawa, M. Kashiwazako, H. Okuyama, K. Kumagai, M. Takanashi, K. Sudo, N. Ikeda, M. Kuroda, Development of novel small hairpin RNAs that do not require processing by Dicer or AGO2. Mol. Ther. 24(7), 1278–1289 (2016). https://doi.org/10.1038/mt.2016.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J. Hu, T. Sun, H. Wang, Z. Chen, S. Wang, L. Yuan, T. Liu, H.R. Li, P. Wang, Y. Feng, Q. Wang, R.E. McLendon, A.H. Friedman, S.T. Keir, D.D. Bigner, J. Rathmell, X.D. Fu, Q.J. Li, X.F. Wang, MiR-215 is induced post-transcriptionally via HIF-Drosha complex and mediates glioma-initiating cell adaptation to hypoxia by targeting KDM1B. Cancer Cell. 29(1), 49–60 (2016). https://doi.org/10.1016/j.ccell.2015.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. C. Sardu, M. Barbieri, M.R. Rizzo, P. Paolisso, G. Paolisso, R. Marfella, Cardiac resynchronization therapy outcomes in type 2 diabetic patients: role of microRNA changes. J. Diabetes Res. 2016, 7292564 (2016). https://doi.org/10.1155/2016/7292564

    Article  CAS  PubMed  Google Scholar 

  38. C. Yang, G. Wang, J. Yang, L. Wang, Long noncoding RNA NBAT1 negatively modulates growth and metastasis of osteosarcoma cells through suppression of miR-21. Am. J. Cancer Res. 7(10), 2009–2019 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. J. Zhang, Z. Tao, Y. Wang, Long noncoding RNA DANCR regulates the proliferation and osteogenic differentiation of human bone-derived marrow mesenchymal stem cells via the p38 MAPK pathway. Int. J. Mol. Med. (2017). https://doi.org/10.3892/ijmm.2017.3215

  40. H. Wu, Q.F. Yin, Z. Luo, R.W. Yao, C.C. Zheng, J. Zhang, J.F. Xiang, L. Yang, L.L. Chen, Unusual processing generates SPA LncRNAs that sequester multiple RNA binding proteins. Mol. Cell 64(3), 534–548 (2016). https://doi.org/10.1016/j.molcel.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  41. D.H. Kim, S. Sung, Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs. Dev. Cell. 40(3), 302–312 e304 (2017). https://doi.org/10.1016/j.devcel.2016.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M.E. Whitely, J.L. Robinson, M.C. Stuebben, H.A. Pearce, M.A.P. McEnery, E. Cosgriff-Hernandez, Prevention of oxygen inhibition of PolyHIPE radical polymerization using a thiol-based crosslinker. ACS Biomater. Sci. Eng. 3(3), 409–419 (2017). https://doi.org/10.1021/acsbiomaterials.6b00663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Y. Nedelec, J. Sanz, G. Baharian, Z.A. Szpiech, A. Pacis, A. Dumaine, J.C. Grenier, A. Freiman, A.J. Sams, S. Hebert, A. Page Sabourin, F. Luca, R. Blekhman, R.D. Hernandez, R. Pique-Regi, J. Tung, V. Yotova, L.B. Barreiro, Genetic aancestry and natural selection drive population differences in immune responses to pathogens. Cell 167(3), 657–669 e621 (2016). https://doi.org/10.1016/j.cell.2016.09.025

    Article  CAS  PubMed  Google Scholar 

  44. A.G. Bert, B.V. Johnson, E.W. Baxter, P.N. Cockerill, A modular enhancer is differentially regulated by GATA and NFAT elements that direct different tissue-specific patterns of nucleosome positioning and inducible chromatin remodeling. Mol. Cell. Biol. 27(8), 2870–2885 (2007). https://doi.org/10.1128/MCB.02323-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. E.S.B. Salem, G.C. Fan, Pathological effects of exosomes in mediating diabetic cardiomyopathy. Adv. Exp. Med. Biol. 998, 113–138 (2017). https://doi.org/10.1007/978-981-10-4397-0_8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. T.R. Mercer, J.S. Mattick, Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 20(3), 300–307 (2013). https://doi.org/10.1038/nsmb.2480

    Article  CAS  PubMed  Google Scholar 

  47. R.W. Newberry, R.T. Raines, A prevalent intraresidue hydrogen bond stabilizes proteins. Nat. Chem. Biol. 12(12), 1084–1088 (2016). https://doi.org/10.1038/nchembio.2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. M.S. Leisegang, C. Fork, I. Josipovic, F.M. Richter, J. Preussner, J. Hu, M.J. Miller, J. Epah, P. Hofmann, S. Gunther, F. Moll, C. Valasarajan, J. Heidler, Y. Ponomareva, T.M. Freiman, L. Maegdefessel, K.H. Plate, M. Mittelbronn, S. Uchida, C. Kunne, K. Stellos, R.T. Schermuly, N. Weissmann, K. Devraj, I. Wittig, R.A. Boon, S. Dimmeler, S.S. Pullamsetti, M. Looso, F.J. Miller Jr., R.P. Brandes, Long noncoding RNA MANTIS facilitates endothelial angiogenic function. Circulation 136(1), 65–79 (2017). https://doi.org/10.1161/CIRCULATIONAHA.116.026991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Y. Zhang, Y.Y. Zhang, T.T. Li, J. Wang, Y. Jiang, Y. Zhao, X.X. Jin, G.L. Xue, Y. Yang, X.F. Zhang, Y.Y. Sun, Z.R. Zhang, X. Gao, Z.M. Du, Y.J. Lu, B.F. Yang, Z.W. Pan, Ablation of interleukin-17 alleviated cardiac interstitial fibrosis and improved cardiac function via inhibiting long non-coding RNA-AK081284 in diabetic mice. J. Mol. Cell. Cardiol. 115, 64–72 (2018). https://doi.org/10.1016/j.yjmcc.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  50. A.A. Thomas, B. Feng, S. Chakrabarti, ANRIL regulates production of extracellular matrix proteins and vasoactive factors in diabetic complications. Am. J. Physiol. Endocrinol. Metab. 314(3), E191–E200 (2018). https://doi.org/10.1152/ajpendo.00268.2017

    Article  CAS  PubMed  Google Scholar 

  51. X. Zhou, W. Zhang, M. Jin, J. Chen, W. Xu, X. Kong, lncRNA MIAT functions as a competing endogenous RNA to upregulate DAPK2 by sponging miR-22-3p in diabetic cardiomyopathy. Cell Death Dis. 8(7), e2929 (2017). https://doi.org/10.1038/cddis.2017.321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Z. Liu, Y. Zhang, Z. Tang, J. Xu, M. Ma, S. Pan, C. Qiu, G. Guan, J. Wang, Matrine attenuates cardiac fibrosis by affecting ATF6 signaling pathway in diabetic cardiomyopathy. Eur. J. Pharmacol. 804, 21–30 (2017). https://doi.org/10.1016/j.ejphar.2017.03.061

    Article  CAS  PubMed  Google Scholar 

  53. Z.W. Huang, L.H. Tian, B. Yang, R.M. Guo, Long noncoding RNA H19 acts as a competing endogenous RNA to mediate CTGF expression by sponging miR-455 in cardiac fibrosis. DNA Cell Biol. 36(9), 759–766 (2017). https://doi.org/10.1089/dna.2017.3799

    Article  CAS  PubMed  Google Scholar 

  54. V. Kesherwani, H.R. Shahshahan, P.K. Mishra, Cardiac transcriptome profiling of diabetic Akita mice using microarray and next generation sequencing. PLoS ONE. 12(8), e0182828 (2017). https://doi.org/10.1371/journal.pone.0182828

    Article  PubMed  PubMed Central  Google Scholar 

  55. C. Zhuo, R. Jiang, X. Lin, M. Shao, LncRNA H19 inhibits autophagy by epigenetically silencing of DIRAS3 in diabetic cardiomyopathy. Oncotarget 8(1), 1429–1437 (2017). https://doi.org/10.18632/oncotarget.13637

    Article  PubMed  Google Scholar 

  56. X. Li, H. Wang, B. Yao, W. Xu, J. Chen, X. Zhou, lncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy. Sci. Rep. 6, 36340 (2016). https://doi.org/10.1038/srep36340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. D. Prakoso, M.J. De Blasio, C. Qin, S. Rosli, H. Kiriazis, H. Qian, X.J. Du, K.L. Weeks, P. Gregorevic, J.R. McMullen, R.H. Ritchie, Phosphoinositide 3-kinase (p110alpha) gene delivery limits diabetes-induced cardiac NADPH oxidase and cardiomyopathy in a mouse model with established diastolic dysfunction. Clin. Sci. (Lond.) 131(12), 1345–1360 (2017). https://doi.org/10.1042/CS20170063

    Article  CAS  Google Scholar 

  58. D. de Gonzalo-Calvo, F. Kenneweg, C. Bang, R. Toro, R.W. van der Meer, L.J. Rijzewijk, J.W. Smit, H.J. Lamb, V. Llorente-Cortes, T. Thum, Circulating long-non coding RNAs as biomarkers of left ventricular diastolic function and remodelling in patients with well-controlled type 2 diabetes. Sci. Rep. 6, 37354 (2016). https://doi.org/10.1038/srep37354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. M. Zhang, H. Gu, J. Chen, X. Zhou, Involvement of long noncoding RNA MALAT1 in the pathogenesis of diabetic cardiomyopathy. Int. J. Cardiol. 202, 753–755 (2016). https://doi.org/10.1016/j.ijcard.2015.10.019

    Article  PubMed  Google Scholar 

  60. M. Zhang, H. Gu, W. Xu, X. Zhou, Down-regulation of lncRNA MALAT1 reduces cardiomyocyte apoptosis and improves left ventricular function in diabetic rats. Int. J. Cardiol. 203, 214–216 (2016). https://doi.org/10.1016/j.ijcard.2015.10.136

    Article  PubMed  Google Scholar 

  61. A.S. Bayoumi, J.P. Teoh, T. Aonuma, Z. Yuan, X. Ruan, Y. Tang, H. Su, N.L. Weintraub, I.M. Kim, MicroRNA-532 protects the heart in acute myocardial infarction, and repressesprss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc. Res. 113(13), 1603–1614 (2017). https://doi.org/10.1093/cvr/cvx132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. M. Di Pierro, R.R. Cheng, E. Lieberman Aiden, P.G. Wolynes, J.N. Onuchic, De novo prediction of human chromosome structures: epigenetic marking patterns encode genome architecture. Proc. Natl Acad. Sci. USA 114 (46), 12126-12131 (2017). https://doi.org/10.1073/pnas.1714980114

    Article  CAS  Google Scholar 

  63. R.M. Spengler, X. Zhang, C. Cheng, J.M. McLendon, J.M. Skeie, F.L. Johnson, B.L. Davidson, R.L. Boudreau, Elucidation of transcriptome-wide microRNA binding sites in human cardiac tissues by Ago2 HITS-CLIP. Nucleic Acids Res. 44(15), 7120–7131 (2016). https://doi.org/10.1093/nar/gkw640

    Article  PubMed  PubMed Central  Google Scholar 

  64. K. McJunkin, Maternal effects of microRNAs in early embryogenesis. RNA Biol. (2017). https://doi.org/10.1080/15476286.2017.1402999

    Article  Google Scholar 

  65. Y. Yue, K. Meng, Y. Pu, X. Zhang, Transforming growth factor beta (TGF-beta) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res. Clin. Pract. 133, 124–130 (2017). https://doi.org/10.1016/j.diabres.2017.08.018

    Article  CAS  PubMed  Google Scholar 

  66. M. Zarkesh, A. Zadeh-Vakili, F. Azizi, F. Foroughi, M.M. Akhavan, M. Hedayati, Altered epigenetic mechanisms in thyroid cancer subtypes. Mol. Diagn. Ther. (2017). https://doi.org/10.1007/s40291-017-0303-y

    Article  Google Scholar 

  67. C.M. Artlett, S. Sassi-Gaha, J.L. Hope, C.A. Feghali-Bostwick, P.D. Katsikis, Mir-155 is overexpressed in systemic sclerosis fibroblasts and is required for NLRP3 inflammasome-mediated collagen synthesis during fibrosis. Arthritis Res. Ther. 19(1), 144 (2017). https://doi.org/10.1186/s13075-017-1331-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. C. Jia, H. Chen, M. Wei, X. Chen, Y. Zhang, L. Cao, P. Yuan, F. Wang, G. Yang, J. Ma, Gold nanoparticle-based miR155 antagonist macrophage delivery restores the cardiac function in ovariectomized diabetic mouse model. Int. J. Nanomed. 12, 4963–4979 (2017). https://doi.org/10.2147/IJN.S138400

    Article  CAS  Google Scholar 

  69. D. Zhang, Y. Cui, B. Li, X. Luo, Y. Tang, miR-155 regulates high glucose-induced cardiac fibrosis via the TGF-beta signaling pathway. Mol. Biosyst. 13(1), 215–224 (2016). https://doi.org/10.1039/c6mb00649c

    Article  PubMed  Google Scholar 

  70. R. Kishore, S.K. Verma, A.R. Mackie, E.E. Vaughan, T.V. Abramova, I. Aiko, P. Krishnamurthy, Bone marrow progenitor cell therapy-mediated paracrine regulation of cardiac miRNA-155 modulates fibrotic response in diabetic hearts. PLoS ONE. 8(4), e60161 (2013). https://doi.org/10.1371/journal.pone.0060161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Y. Guo, X. Zhuang, Z. Huang, J. Zou, D. Yang, X. Hu, Z. Du, L. Wang, X. Liao, Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-kappaB-mediated inflammation both in vitro and in vivo. Biochim. Biophys. Acta 1864(1), 238–251 (2017). https://doi.org/10.1016/j.bbadis.2017.09.029

    Article  CAS  Google Scholar 

  72. X. Liu, H. Mujahid, B. Rong, Q.H. Lu, W. Zhang, P. Li, N. Li, E.S. Liang, Q. Wang, D.Q. Tang, N.L. Li, X.P. Ji, Y.G. Chen, Y.X. Zhao, M.X. Zhang, Irisin inhibits high glucose-induced endothelial-to-mesenchymal transition and exerts a dose-dependent bidirectional effect on diabetic cardiomyopathy. J. Cell. Mol. Med. (2017). https://doi.org/10.1111/jcmm.13360

  73. H. Geng, J. Guan, MiR-18a-5p inhibits endothelial-mesenchymal transition and cardiac fibrosis through the Notch2 pathway. Biochem. Biophys. Res. Commun. 491(2), 329–336 (2017). https://doi.org/10.1016/j.bbrc.2017.07.101

    Article  CAS  PubMed  Google Scholar 

  74. B. Zhou, J.W. Yu, A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-beta1. Biochem. Biophys. Res. Commun. 487(4), 769–775 (2017). https://doi.org/10.1016/j.bbrc.2017.04.044

    Article  CAS  PubMed  Google Scholar 

  75. S. Rawal, P.E. Munasinghe, P.T. Nagesh, J.K.S. Lew, G.T. Jones, M.J.A. Williams, P. Davis, D. Bunton, I.F. Galvin, P. Manning, R.R. Lamberts, R. Katare, Down-regulation of miR-15a/b accelerates fibrotic remodelling in the Type 2 diabetic human and mouse heart. Clin. Sci. (Lond.) 131(9), 847–863 (2017). https://doi.org/10.1042/CS20160916

    Article  CAS  Google Scholar 

  76. B. Feng, S. Chen, A.D. Gordon, S. Chakrabarti, miR-146a mediates inflammatory changes and fibrosis in the heart in diabetes. J. Mol. Cell. Cardiol. 105, 70–76 (2017). https://doi.org/10.1016/j.yjmcc.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  77. P. Habibi, A. Alihemmati, M. Nasirzadeh, H. Yousefi, M. Habibi, N. Ahmadiasl, Involvement of microRNA-133 and -29 in cardiac disturbances in diabetic ovariectomized rats. Iran. J. Basic Med. Sci. 19(11), 1177–1185 (2016)

    PubMed  PubMed Central  Google Scholar 

  78. S.I. Ohkura, S. Usui, S.I. Takashima, N. Takuwa, K. Yoshioka, Y. Okamoto, Y. Inagaki, N. Sugimoto, T. Kitano, M. Takamura, T. Wada, S. Kaneko, Y. Takuwa, Augmented sphingosine 1 phosphate receptor-1 signaling in cardiac fibroblasts induces cardiac hypertrophy and fibrosis through angiotensin II and interleukin-6. PLoS ONE. 12(8), e0182329 (2017). https://doi.org/10.1371/journal.pone.0182329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Y. Zhang, J.H. Wang, Y.Y. Zhang, Y.Z. Wang, J. Wang, Y. Zhao, X.X. Jin, G.L. Xue, P.H. Li, Y.L. Sun, Q.H. Huang, X.T. Song, Z.R. Zhang, X. Gao, B.F. Yang, Z.M. Du, Z.W. Pan, Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGF beta1 and miR-29 pathways. Sci. Rep. 6, 23010 (2016). https://doi.org/10.1038/srep23010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. S.K. Raut, A. Kumar, G.B. Singh, U. Nahar, V. Sharma, A. Mittal, R. Sharma, M. Khullar, miR-30c mediates upregulation of Cdc42 and Pak1 in diabetic cardiomyopathy. Cardiovasc. Ther. 33(3), 89–97 (2015). https://doi.org/10.1111/1755-5922.12113

    Article  CAS  PubMed  Google Scholar 

  81. S. Liu, W. Li, M. Xu, H. Huang, J. Wang, X. Chen, Micro-RNA 21 targets dual specific phosphatase 8 to promote collagen synthesis in high glucose-treated primary cardiac fibroblasts. Can. J. Cardiol. 30(12), 1689–1699 (2014). https://doi.org/10.1016/j.cjca.2014.07.747

    Article  PubMed  Google Scholar 

  82. N.M. Sharma, S.S. Nandi, H. Zheng, P.K. Mishra, K.P. Patel, A novel role for miR-133a in centrally mediated activation of the renin-angiotensin system in congestive heart failure. Am. J. Physiol. Heart Circ. Physiol. 312(5), H968–H979 (2017). https://doi.org/10.1152/ajpheart.00721.2016

    Article  PubMed  PubMed Central  Google Scholar 

  83. S. Chen, P. Puthanveetil, B. Feng, S.J. Matkovich, G.W. Dorn 2nd, S. Chakrabarti, Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J. Cell. Mol. Med. 18(3), 415–421 (2014). https://doi.org/10.1111/jcmm.12218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. X. Liu, E. Liang, X. Song, Z. Du, Y. Zhang, Y. Zhao, Inhibition of Pin1 alleviates myocardial fibrosis and dysfunction in STZ-induced diabetic mice. Biochem. Biophys. Res. Commun. 479(1), 109–115 (2016). https://doi.org/10.1016/j.bbrc.2016.09.050

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by grants from the National Natural Science Foundation of China (81700212 and 81570295) and Natural Science Foundation of Anhui Provincial (1808085MH231) and Natural Science Foundation of Anhui Provincial Education Department (KJ2017A168).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuan-Sheng Ding or Kai-Hu Shi.

Ethics declarations

Conflict of interestERK

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

The author contributed equally: Zheng-Yu Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, H., Song, ZY., Ding, XS. et al. LncRNAs and miRs as epigenetic signatures in diabetic cardiac fibrosis: new advances and perspectives. Endocrine 62, 281–291 (2018). https://doi.org/10.1007/s12020-018-1688-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1688-z

Keywords

Navigation