Skip to main content

Advertisement

Log in

Pharmacological effect of human melanocortin-2 receptor accessory protein 2 variants on hypothalamic melanocortin receptors

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Melanocortin-3 receptor (MC3R), melanocortin-4 receptor (MC4R), and a recently identified melanocortin-2 receptor accessory protein 2 (MRAP2), are highly expressed in hypothalamus and coordinately regulate energy homeostasis, but the single cellular transcriptome of melanocortin system remains unknown. Several infrequent MRAP2 variants are reported from severe obese human patients but the mechanisms on how they affect melanocortin signaling are unclear.

Methods

First, we performed in silico analysis of mouse hypothalamus RNA sequencing datasets at single-cell resolution from two independent studies. Next, we inspected the three-dimensional conformational alteration of three mutations on MRAP2 protein. Finally, the influence of MRAP2 variants on MC3R and MC4R signaling was analyzed in vitro.

Results

(1) We confirmed the actual co-expression of Mrap2 with Mc3r and Mc4r, and demonstrated more broad distribution of Mrap2-positive neuronal populations than Mc3r or Mc4r in mouse hypothalamus. (2) Compared with wild-type MRAP2, MRAP2N88Y, and MRAP2R125C showed impaired α-MSH-induced MC4R or MC3R stimulation. (3) MRAP2N88Yexhibited enhanced interaction with MC4R protein and its own.

Conclusions

This is the first dedicated description of single-cell transcriptome signature of Mrap2, Mc3r, and Mc4r in the central nerve system and the first evidence describing the unique dimer formation, conformational change, and pharmacological effect of MRAP2 mutations on MC3R signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.M. Hinkle, J.A. Sebag, Structure and function of the melanocortin2 receptor accessory protein (MRAP). Mol. Cell. Endocrinol. 300, 25–31 (2009)

    Article  PubMed  CAS  Google Scholar 

  2. T.R. Webb, A.J. Clark, Minireview: the melanocortin 2 receptor accessory proteins. Mol. Endocrinol. (Baltim., Md.) 24, 475–484 (2010)

    Article  CAS  Google Scholar 

  3. D.S. Jackson, S. Ramachandrappa, A.J. Clark, L.F. Chan, Melanocortin receptor accessory proteins in adrenal disease and obesity. Front. Neurosci. 9, 213 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  4. A.S. Chen, D.J. Marsh, M.E. Trumbauer, E.G. Frazier, X.M. Guan, H. Yu, C.I. Rosenblum, A. Vongs, Y. Feng, L. Cao, J.M. Metzger, A.M. Strack, R.E. Camacho, T.N. Mellin, C.N. Nunes, W. Min, J. Fisher, S. Gopal-Truter, D.E. MacIntyre, H.Y. Chen, L.H. Van der Ploeg, Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet. 26, 97–102 (2000)

    Article  PubMed  CAS  Google Scholar 

  5. D. Huszar, C.A. Lynch, V. Fairchild-Huntress, J.H. Dunmore, Q. Fang, L.R. Berkemeier, W. Gu, R.A. Kesterson, B.A. Boston, R.D. Cone, F.J. Smith, L.A. Campfield, P. Burn, F. Lee, Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997)

    Article  PubMed  CAS  Google Scholar 

  6. M. Mencarelli, G.E. Walker, S. Maestrini, L. Alberti, B. Verti, A. Brunani, M.L. Petroni, M. Tagliaferri, A. Liuzzi, A.M. Di Blasio, Sporadic mutations in melanocortin receptor 3 in morbid obese individuals. Eur. J. Human. Genet. : EJHG 16, 581–586 (2008)

    Article  CAS  Google Scholar 

  7. Y.S. Lee, L.K. Poh, B.L. Kek, K.Y. Loke, The role of melanocortin 3 receptor gene in childhood obesity. Diabetes 56, 2622–2630 (2007)

    Article  PubMed  CAS  Google Scholar 

  8. I.S. Farooqi, J.M. Keogh, G.S. Yeo, E.J. Lank, T. Cheetham, S. O’Rahilly, Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. New Engl. J. Med. 348, 1085–1095 (2003)

    Article  PubMed  CAS  Google Scholar 

  9. C. Lubrano-Berthelier, C. Le Stunff, P. Bougneres, C. Vaisse, A homozygous null mutation delineates the role of the melanocortin-4 receptor in humans. J. Clin. Endocrinol. Metab. 89, 2028–2032 (2004)

    Article  PubMed  CAS  Google Scholar 

  10. Y. Bromberg, J. Overton, C. Vaisse, R.L. Leibel, B. Rost, In silico mutagenesis: a case study of the melanocortin 4 receptor. FASEB J. : Off. Publ. Fed. Am. Soc. Exp. Biol. 23, 3059–3069 (2009)

    Article  CAS  Google Scholar 

  11. P. You, H. Hu, Y. Chen, Y. Zhao, Y. Yang, T. Wang, R. Xing, Y. Shao, W. Zhang, D. Li, H. Chen, M. Liu, Effects of melanocortin 3 and 4 receptor deficiency on energy homeostasis in rats. Sci. Rep. 6, 34938 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. T.P. Braun, B. Orwoll, X. Zhu, P.R. Levasseur, M. Szumowski, M.L. Nguyen, M.L. Bouxsein, R.F. Klein, D.L. Marks, Regulation of lean mass, bone mass, and exercise tolerance by the central melanocortin system. PLoS ONE 7, e42183 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. S. Roy, S.J. Roy, S. Pinard, M.J. Agulleiro, J.M. Cerda-Reverter, J.L. Parent, N. Gallo-Payet, The C-terminal domains of melanocortin-2 receptor (MC2R) accessory proteins (MRAP1) influence their localization and ACTH-induced cAMP production. General Comp. Endocrinol. 176, 265–274 (2012)

    Article  CAS  Google Scholar 

  14. J.A. Sebag, P.M. Hinkle, Melanocortin-2 receptor accessory protein MRAP forms antiparallel homodimers. Proc. Natl Acad. Sci. USA 104, 20244–20249 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  15. T.R. Webb, L. Chan, S.N. Cooray, M.E. Cheetham, J.P. Chapple, A.J. Clark, Distinct melanocortin 2 receptor accessory protein domains are required for melanocortin 2 receptor interaction and promotion of receptor trafficking. Endocrinology 150, 720–726 (2009)

    Article  PubMed  CAS  Google Scholar 

  16. L.F. Chan, T.R. Webb, T.T. Chung, E. Meimaridou, S.N. Cooray, L. Guasti, J.P. Chapple, M. Egertova, M.R. Elphick, M.E. Cheetham, L.A. Metherell, A.J. Clark, MRAP and MRAP2 are bidirectional regulators of the melanocortin receptor family. Proc. Natl Acad. Sci. USA 106, 6146–6151 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  17. M. Asai, S. Ramachandrappa, M. Joachim, Y. Shen, R. Zhang, N. Nuthalapati, V. Ramanathan, D.E. Strochlic, P. Ferket, K. Linhart, C. Ho, T.V. Novoselova, S. Garg, M. Ridderstrale, C. Marcus, J.N. Hirschhorn, J.M. Keogh, S. O’Rahilly, L.F. Chan, A.J. Clark, I.S. Farooqi, J.A. Majzoub, Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Sci. (New Y., N. Y.) 341, 275–278 (2013)

    Article  CAS  Google Scholar 

  18. J.A. Sebag, C. Zhang, P.M. Hinkle, A.M. Bradshaw, R.D. Cone, Developmental control of the melanocortin-4 receptor by MRAP2 proteins in zebrafish. Sci. (New Y., N. Y.) 341, 278–281 (2013)

    Article  CAS  Google Scholar 

  19. J. Zhang, X. Li, Y. Zhou, L. Cui, J. Li, C. Wu, Y. Wan, J. Li, Y. Wang, The interaction of MC3R and MC4R with MRAP2, ACTH, alpha-MSH and AgRP in chickens. J. Endocrinol. 234, 155–174 (2017)

    Article  PubMed  CAS  Google Scholar 

  20. J.M. Cerda-Reverter, M.J. Agulleiro, R. Cortes, E. Sanchez, R. Guillot, E. Leal, B. Fernandez-Duran, S. Puchol, M. Eley, Involvement of melanocortin receptor accessory proteins (MRAPs) in the function of melanocortin receptors. General Comp. Endocrinol. 188, 133–136 (2013)

    Article  CAS  Google Scholar 

  21. L. Schonnop, G. Kleinau, N. Herrfurth, A.L. Volckmar, C. Cetindag, A. Muller, T. Peters, S. Herpertz, J. Antel, J. Hebebrand, H. Biebermann, A. Hinney, Decreased melanocortin-4 receptor function conferred by an infrequent variant at the human melanocortin receptor accessory protein 2 gene. Obesity (Silver Spring, Md.) 24, 1976–1982 (2016)

    Article  CAS  Google Scholar 

  22. Chaly, A.L., Srisai, D., Gardner, E.E., Sebag, J.A., The melanocortin receptor accessory protein 2 promotes food intake through inhibition of the prokineticin receptor-1, Elife 5, (2016) .

  23. D. Srisai, T.C. Yin, A.A. Lee, A.A.J. Rouault, N.A. Pearson, J.L. Grobe, J.A. Sebag, MRAP2 regulates ghrelin receptor signaling and hunger sensing. Nat. Commun. 8, 713 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. A.A.J. Rouault, A.A. Lee, J.A. Sebag, Regions of MRAP2 required for the inhibition of orexin and prokineticin receptor signaling. Biochim. Et. Biophys. Acta 1864, 2322–2329 (2017)

    Article  CAS  Google Scholar 

  25. A.A.J. Rouault, D.K. Srinivasan, T.C. Yin, A.A. Lee, J.A. Sebag, Melanocortin receptor accessory proteins (MRAPs): Functions in the melanocortin system and beyond. BBA-Mol. Basis Dis. 1863, 2462–2467 (2017)

    Article  CAS  Google Scholar 

  26. B.W. Jones, G.J. Song, E.K. Greuber, P.M. Hinkle, Phosphorylation of the endogenous thyrotropin-releasing hormone receptor in pituitary GH3 cells and pituitary tissue revealed by phosphosite-specific antibodies. J. Biol. Chem. 282, 12893–12906 (2007)

    Article  PubMed  CAS  Google Scholar 

  27. J. Peng, J. Xu, RaptorX: exploiting structure information for protein alignment by statistical inference. Proteins 79(Suppl 10), 161–171 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  28. We’re living in a 3D world. Nat. Struct. Mol. Biol. 13, 93 (2006).

  29. R.A. Romanov, A. Zeisel, J. Bakker, F. Girach, A. Hellysaz, R. Tomer, A. Alpar, J. Mulder, F. Clotman, E. Keimpema, B. Hsueh, A.K. Crow, H. Martens, C. Schwindling, D. Calvigioni, J.S. Bains, Z. Mate, G. Szabo, Y. Yanagawa, M.D. Zhang, A. Rendeiro, M. Farlik, M. Uhlen, P. Wulff, C. Bock, C. Broberger, K. Deisseroth, T. Hokfelt, S. Linnarsson, T.L. Horvath, T. Harkany, Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat. Neurosci. 20, 176–188 (2017)

    Article  PubMed  CAS  Google Scholar 

  30. R. Chen, X. Wu, L. Jiang, Y. Zhang, Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity. Cell Rep. 18, 3227–3241 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. T.V. Novoselova, R. Larder, D. Rimmington, C. Lelliott, E.H. Wynn, R.J. Gorrigan, P.H. Tate, L. Guasti, S. O’Rahilly, A.J.L. Clark, D.W. Logan, A.P. Coll, L.F. Chan, S.M.G. Project, Loss of Mrap2 is associated with Sim1 deficiency and increased circulating cholesterol. J. Endocrinol. 230, 13–26 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. K. Begriche, P.R. Levasseur, J.Y. Zhang, J. Rossi, D. Skorupa, L.A. Solt, B. Young, T.P. Burris, D.L. Marks, R.L. Mynatt, A.A. Butler, Genetic dissection of the functions of the melanocortin-3 receptor, a seven-transmembrane G-protein-coupled receptor, suggests roles for central and peripheral receptors in energy homeostasis. J. Biol. Chem. 286, 40771–40781 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. G.M. Sutton, D. Perez-Tilve, R. Nogueiras, J. Fang, J.K. Kim, R.D. Cone, J.M. Gimble, M.H. Tschop, A.A. Butler, The melanocortin-3 receptor is required for entrainment to meal intake. J. Neurosci. 28, 12946–12955 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. G.M. Sutton, J.L. Trevaskis, M.W. Hulver, R.P. McMillan, N.J. Markward, M.J. Babin, E.A. Meyer, A.A. Butler, Diet-genotype interactions in the development of the obese, insulin-resistant phenotype of C57BL/6J mice lacking melanocortin-3 or-4 receptors. Endocrinology 147, 2183–2196 (2006)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. K.L.J. Ellacott, J.G. Murphy, D.L. Marks, R.D. Cone, Obesity-induced inflammation in white adipose tissue is attenuated by loss of melanocortin-3 receptor signaling. Endocrinology 148, 6186–6194 (2007)

    Article  PubMed  CAS  Google Scholar 

  36. J.A. Sebag, P.M. Hinkle, Regulation of G protein-coupled receptor signaling: specific dominant-negative effects of melanocortin 2 receptor accessory protein 2. Sci. Signal. 3, ra28 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Xin Xie for providing the pCRE-luc plasmids. We thank Wenbiao Chen for helpful discussion and valuable comments on the manuscript preparation. The work was supported by grants from National Key Research and Development Program of China (Grant No. 2017YFA0103900, 2017YFA0103902, and 2016YFA0102200); The National Natural Science Foundation of China (Grant No. 81570760 and 31771283); One Thousand Youth Talents Program of China to Chao Zhang and Bing Luan; The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. A11323); The Shanghai Rising-Star Program (Grant No 15QA1403600); the Fundamental Research Funds for the Central Universities of Tongji University.

Author contributions

J.L., L.L., L.G., and C.Z. conceived and designed the experiments; J.L., L.L., X.J., B.X., and L.P. performed experiments; J.L., L.L., X.J., B.X., S.L., W.Z., and C.Z. analyzed data; J.L., L.L., C.Z., B.L., L.G., and C.Z. interpreted results of experiments; J.L., L.L., and C.Z. approved final version of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lulu Gong or Chao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Li, L., Jin, X. et al. Pharmacological effect of human melanocortin-2 receptor accessory protein 2 variants on hypothalamic melanocortin receptors. Endocrine 61, 94–104 (2018). https://doi.org/10.1007/s12020-018-1596-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1596-2

Key words

Navigation